Experiment and observation on invasion of brain glioma in vivo.

J Clin Neurosci

Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, PR China.

Published: November 2002

Research on invasion and metastasis of glioma in vivo was performed by implanting C6 glioma cells transfected with enhanced green fluorescent protein (EGFP) gene into the brain of SD rats. Firstly, C6 glioma cells were transfected with a plasmid vector (pEGFP-N3) containing the EGFP gene. Stable EGFP-expressing clones were isolated and examination for these cells by flow cytometry and electron microscope was done. Secondly, EGFP-expressing cells were stereotactically injected into the brain parenchyma of SD rats to establish xenotransplanted tumor. Four weeks later rats were killed and continuous brain sections were examined using fluorescence microscopy after adjacent sections were examined by immunohistochemistry or routine hematoxylin and eosin staining for the visualization and detection of tumor cell invasion. Xenotransplanted tumor was primarily cultured to determine the storage of EGFP gene in vivo. The results showed that EGFP-transfected C6 glioma cells maintained stable high-level EGFP expression in the central nervous system during their growth in vivo. EGFP fluorescence clearly demarcated the primary tumor margin and readily allowed for the visualization of distant micrometastasis and invasion on the single-cell level. Small locally invasive foci, including those immediately adjacent to the leading invasive edge of the tumor, were virtually undetectable by routine hematoxylin and eosin staining and immunohistochemistry. These results suggested that EGFP-transfected C6 cells can be visualized by fluorescence microscopy after intracranial implantation. This model is an excellent experimental animal model in research on invasion and metastasis of brain glioma in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1054/jocn.2002.1140DOI Listing

Publication Analysis

Top Keywords

glioma vivo
12
glioma cells
12
egfp gene
12
brain glioma
8
invasion metastasis
8
cells transfected
8
xenotransplanted tumor
8
sections examined
8
fluorescence microscopy
8
routine hematoxylin
8

Similar Publications

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Unlabelled: To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as .

View Article and Find Full Text PDF

Tailored biomimetic nanoreactor improves glioma chemodynamic treatment via triple glutathione depletion and prompt acidity elevation.

Mater Today Bio

February 2025

Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.

Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.

View Article and Find Full Text PDF

Liposomal nanocarriers are able to carry peptides for efficient and selective delivery of radioactive tracer and drugs into the tumors. Angiopoietin 2 (ANGPT2) is an excellent biomarker for precise diagnosis and therapy of glioma. The present study aimed to design ANGPT2-specific peptides to modify the surface of nanoliposomes containing doxorubicin (Dox) for integrative imaging and targeting therapy of glioma.

View Article and Find Full Text PDF

Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!