AI Article Synopsis

  • Researchers isolated cDNA for carbonyl reductase (CR) from pig heart, revealing a high sequence similarity (81%) with rabbit NADP(+)-dependent retinol dehydrogenase (NDRD).
  • Both enzymes are 100-kDa homotetramers with high activity against various compounds including all-trans-retinal, and were confirmed through protein sequencing from rabbit heart CR.
  • The study found that both CR and its mRNA are consistently expressed in pig and rabbit tissues, and the enzyme is localized in peroxisomes, marking it as the first mammalian peroxisomal enzyme identified that reduces all-trans-retinal.

Article Abstract

In this study, we isolated a cDNA for tetrameric carbonyl reductase (CR) from pig heart. The pig CR showed high amino acid sequence identity (81%) with rabbit NADP(+)-dependent retinol dehydrogenase (NDRD). The purified recombinant pig CR and NDRD were about 100-kDa homotetramers and exhibited high reductase activity towards alkyl phenyl ketones, alpha-dicarbonyl compounds and all-trans-retinal. The identity of NDRD with the tetrameric CR was verified by protein sequencing of CR purified from rabbit heart. Both tetrameric CR and its mRNA were ubiquitously expressed in pig and rabbit tissues. The pig and rabbit enzymes belonged to the short-chain dehydrogenase/reductase family, and their sequences comprise a C-terminal SRL tripeptide, which is a variant of the type 1 peroxisomal targeting signal, SKL. Transfection of HeLa cells with vectors expressing pig CR demonstrated that the enzyme is localized in the peroxisomes. Thus, the tetrameric form of CR represents the first mammalian peroxisomal enzyme that reduces all-trans-retinal as the endogenous substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0009-2797(02)00210-7DOI Listing

Publication Analysis

Top Keywords

tetrameric form
8
carbonyl reductase
8
pig rabbit
8
pig
7
tetrameric
5
cloning expression
4
expression tissue
4
tissue distribution
4
distribution tetrameric
4
form pig
4

Similar Publications

The detection of molecular patterns associated with invading pathogens is a hallmark of innate immune systems. Prokaryotes deploy sophisticated host defense mechanisms in innate anti-phage immunity. Shedu is a single-component defense system comprising a putative nuclease SduA.

View Article and Find Full Text PDF

PqsE and RhlR, key regulators of the Pseudomonas aeruginosa quorum sensing (QS) system, form a hetero-tetrameric complex essential for controlling the expression of virulence factors such as pyocyanin. The interaction between the PqsE homodimer and the RhlR homodimer bound to C4-HSL, enables RhlR to bind low-affinity promoters, thereby influencing gene regulation. Recent studies suggest that RhlR transcriptional activity is modulated by temperature, exhibiting higher activity at environmental temperatures (25 °C) compared to mammalian body temperature (37 °C).

View Article and Find Full Text PDF

Identification of assembly mode of non-canonical BAF (ncBAF) chromatin remodeling complex core module.

Biochem Biophys Res Commun

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:

Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.

View Article and Find Full Text PDF

Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.

View Article and Find Full Text PDF

Applicability of AlphaFold2 in the modeling of dimeric, trimeric, and tetrameric coiled-coil domains.

Protein Sci

January 2025

Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.

Coiled coils are a common protein structural motif involved in cellular functions ranging from mediating protein-protein interactions to facilitating processes such as signal transduction or regulation of gene expression. They are formed by two or more alpha helices that wind around a central axis to form a buried hydrophobic core. Various forms of coiled-coil bundles have been reported, each characterized by the number, orientation, and degree of winding of the constituent helices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!