Extracellular nucleotides are agonists at the family of receptors known as the P2 receptors, and in keratinocytes the P2Y2 subtype is known to elevate the intracellular free calcium concentration (Cai) and stimulate proliferation. In this study, we have investigated the presence of other functional members of the P2Y subgroup in both normal human keratinocytes and the HaCaT cell line. Using reverse transcription polymerase chain reaction, the expression of mRNA for P2Y1, P2Y2, P2Y4, and P2Y6 receptors was demonstrated in HaCaT cells and differentiated and undifferentiated normal human keratinocytes. Cai was monitored in response to a panel of P2Y receptor agonists. To couple mobilized Cai to a downstream cellular response, cell proliferation was also addressed. In both cell types, adenosine 5'-triphosphate and uridine 5'-triphosphate induced Cai transients of approximately equal duration, magnitude, and shape, confirming the presence of functional P2Y2 receptors. In HaCaT cells, additional characteristic responses were observed in a subpopulation of cells; adenosine 5'-triphosphate failed to elevate Cai in some cells responding to uridine 5'-triphosphate, indicating the presence of P2Y4 receptors, whereas the P2Y1-specific agonist 2-methylthio-5'-adenosine diphosphate was, again, only effective in a small subpopulation. Uridine 5'-diphosphate was ineffective, indicating the absence of functional P2Y6 receptors. Adenosine 5'-triphosphate and uridine 5'-triphosphate equally promoted cell growth in normal human keratinocytes in comparison with the control. In HaCaT cells, adenosine 5'-triphosphate, uridine 5'-triphosphate, and adenosine 5'-diphosphate significantly increased proliferation in comparison to the controls, with a 30% higher response to uridine 5'-triphosphate than with adenosine 5'-triphosphate. These data demonstrate that multiple P2Y receptors (P2Y1, P2Y2, and P2Y4 subtypes) are differentially involved in the regulation of proliferation in human keratinocytes and therefore may be important in wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1523-1747.2003.12050.x | DOI Listing |
Eur J Pharmacol
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.
Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Impaired wound healing affects the life quality of patients and causes a substantial financial burden. Hydrogen-rich medium is reported to have antioxidant and anti-inflammatory effects. However, the role of hydrogen-rich saline (HRS) in cutaneous wound healing remains largely unexplored, especially by metabolomics.
View Article and Find Full Text PDFActa Dermatovenerol Croat
November 2024
Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;
Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.
View Article and Find Full Text PDFBiomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR) & Skin Research Institute of Singapore (SRIS), Singapore, Republic of Singapore.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!