TPD (tapping panel dryness) is a complex physiological syndrome widely found in rubber tree (Hevea brasiliensis) plantations, which causes severe yield and crop losses in natural rubber-producing countries. The molecular mechanism underlying TPD is not known and there is presently no effective prevention or treatment for this serious disease. To investigate the molecular mechanism of TPD, we isolated and characterized genes for which the change of expression is associated with TPD. We report here the identification and characterization of a Myb transcription factor HbMyb1. HbMyb1 is expressed in leaves, barks, and latex of rubber trees, but its expression is significantly decreased in barks of TPD trees. Our results suggest that the expression of HbMyb1 is likely associated with TPD and that the function of HbMyb1 is associated with the integrity of bark tissue of rubber trees.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1020719420867DOI Listing

Publication Analysis

Top Keywords

myb transcription
8
transcription factor
8
tpd tapping
8
tapping panel
8
panel dryness
8
hevea brasiliensis
8
molecular mechanism
8
associated tpd
8
rubber trees
8
trees expression
8

Similar Publications

Integrated metabolomic and transcriptomic analysis of anthocyanin metabolism in wheat pericarp.

BMC Genom Data

January 2025

Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.

Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.

Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).

View Article and Find Full Text PDF

Circulating Adenoid Cystic Carcinoma associated MYB transcripts enable rapid and sensitive detection of metastatic disease in blood liquid biopsies.

J Liq Biopsy

December 2024

Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.

Adenoid cystic carcinoma (ACC) is a rare and lethal malignancy that originates in secretory glands of the head and neck. A prominent molecular feature of ACC is the overexpression of the proto-oncogene MYB. ACC has a poor long-term survival due to its high propensity for recurrence and protracted metastasis.

View Article and Find Full Text PDF

WD40 proteins PaTTG1 interact with both bHLH and MYB to regulate trichome formation and anthocyanin biosynthesis in Platanus acerifolia.

Plant Sci

January 2025

Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:

Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexes consist of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Previous data show that the knockdown of the gene in the MDA-MB-231 cell line leads to the downregulation of gene expression. In addition, and genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!