A major consideration in designing dental implants is the creation of a surface that provides strong attachment between the implant and bone, connective tissue, or epithelium. In addition, it is important to inhibit the adherence of oral bacteria on titanium surfaces exposed to the oral cavity to maintain plaque-free implants. Previous in vitro studies have shown that titanium implant surfaces coated with titanium nitride (TiN) reduced bacterial colonization compared to other clinically used implant surfaces. The aim of the present study was to examine the support of fibroblast growth by a TiN surface that has antimicrobial characteristics. Mouse fibroblasts were cultured on smooth titanium discs that were either magnetron-sputtered with a thin layer of titanium nitride, thermal oxidized, or modified with laser radiation (using a Nd-YAG laser). The resulting surface topography was examined by scanning electron microscopy (SEM), and surface roughness was estimated using a two-dimensional contact stylus profilometer. A protein assay (BCA assay) and a colorimetric assay to examine fibroblast metabolism (MTT) were used. Cellular morphology and cell spreading were analyzed using SEM and fluorescence microscopy. Fibroblasts on oxidized titanium surfaces showed a more spherical shape, whereas cells on laser-treated titanium and on TiN appeared intimately adherent to the surface. The MTT activity and total protein were significantly increased in fibroblasts cultured on titanium surfaces coated with TiN compared to all other surface modifications tested. This study suggests that a titanium nitride coating might be suitable to support tissue growth on implant surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.10417 | DOI Listing |
J Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Electronic address:
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Department of Neurosurgery, Neurocenter of South Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania.
Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
The surface of titanium foil can be modified by heating in the air, in a N flow, and in an NH flow. Upon heating in the air, the elemental Ti gradually transforms to TiO at 550 °C and to rutile TiO at above 700 °C. Treatment in a N flow leads similarly to TiO at 600 °C and TiO at 700 °C, although the overall reaction is slower.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!