Enzymes which exhibit core 2 beta1,6 N-acetylglucosaminyltransferase (C2GnT) activity play important roles in physiologic processes including the inflammatory response and immune system function, and C2GnT activity is regulated during processes, such as T cell activation and cellular differentiation. In this study, we have examined the regulation of C2GnT activity in the H292 airway epithelial cell line by epidermal growth factor (EGF), which has been previously shown to upregulate expression of the airway mucin MUC5AC in this cell line. We found that EGF suppressed C2GnT activity in a time- and dose-dependent fashion, and also suppressed core 4 beta1,6 N-acetylglucosaminyltransferase (C4GnT) activity. Consistent with the suppression of C4GnT activity, Northern blotting results showed that EGF preferentially inhibited the M isoform of C2GnT, which forms core 2, core 4, and blood group I beta1,6 branched carbohydrate structures, while the L isoform, which forms only the core 2 structure, was only modestly affected. Furthermore, EGF treatment resulted in a shift in the carbohydrate structure of FLAG-tagged MUC1 expressed in the cells from core 2-based toward core 1-based structures, consistent with the inhibitory effects of EGF on C2GnT. Transforming growth factor alpha mimicked the effect of EGF on C2GnT, implicating the EGF receptor (EGF-R) in C2GnT suppression, and the EGF-R tyrosine kinase inhibitor AG1478 blocked C2GnT suppression, confirming the role of EGF-R in the inhibition of C2GnT expression. Also, PD98059, a specific inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)1/2 in the Ras-mitogen-activated protein kinase pathway, completely blocked the EGF suppressive effect, suggesting possible involvement of the Ras-mitogen-activated protein kinase pathway in EGF-mediated downregulation of C2GnT. The results of this study suggest that exposure of airway cells to EGF may result in remodeling of mucin carbohydrate structure, potentially altering the biological properties of the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2002-0147OC | DOI Listing |
Anat Sci Int
January 2017
Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
Fifteen galectins, β-galactose-binding animal lectins, are known to be distributed throughout the body. We herein summarize current knowledge on the tissue- and cell-specific localization of galectins and their potential functions in health and disease. Galectin-3 is widely distributed in epithelia, including the simple columnar epithelium in the gut, stratified squamous epithelium in the gut and skin, and transitional epithelium and several regions in nephrons in the urinary tract.
View Article and Find Full Text PDFJ Virol
February 2016
Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, FARAH, University of Liège, Liege, Belgium
Unlabelled: Carbohydrates play major roles in host-virus interactions. It is therefore not surprising that, during coevolution with their hosts, viruses have developed sophisticated mechanisms to hijack for their profit different pathways of glycan synthesis. Thus, the Bo17 gene of Bovine herpesvirus 4 (BoHV-4) encodes a homologue of the cellular core 2 protein β-1,6-N-acetylglucosaminyltransferase-mucin type (C2GnT-M), which is a key player for the synthesis of complex O-glycans.
View Article and Find Full Text PDFChemistry
June 2013
Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovak Republic.
β1,6-GlcNAc-transferase (C2GnT) is an important controlling factor of biological functions for many glycoproteins and its activity has been found to be altered in breast, colon, and lung cancer cells, in leukemia cells, in the lymhomonocytes of multiple sclerosis patients, leukocytes from diabetes patients, and in conditions causing an immune deficiency. The result of the action of C2GnT is the core 2 structure that is essential for the further elongation of the carbohydrate chains of O-glycans. The catalytic mechanism of this metal-ion-independent glycosyltransferase is of paramount importance and is investigated here by using quantum mechanical (QM) (density functional theory (DFT))/molecular modeling (MM) methods with different levels of theory.
View Article and Find Full Text PDFJ Exp Med
December 2012
Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
Immune responses are modified by a diverse and abundant repertoire of carbohydrate structures on the cell surface, which is known as the glycome. In this study, we propose that a unique glycome that can be identified through the binding of galectin-4 is created on local, but not systemic, memory CD4+ T cells under diverse intestinal inflammatory conditions, but not in the healthy state. The colitis-associated glycome (CAG) represents an immature core 1-expressing O-glycan.
View Article and Find Full Text PDFBlood
November 2012
Department of Pathology and Laboratory Medicine, University of California-Los Angeles School of Medicine, 10833 Le ConteAve,Los Angeles, CA 90095, USA.
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma and an aggressive malignancy. Galectin-3 (gal-3), the only antiapoptotic member of the galectin family, is overexpressed in DLBCL. While gal-3 can localize to intracellular sites, gal-3 is secreted by DLBCL cells and binds back to the cell surface in a carbohydrate-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!