The effects of NaCl on the aggregation of two typical thiacarbocyanine dyes (3,3'-di(3-sulfopropyl)-4,5,4',5'-dibenzo-9-phenyl-thiacarbocyanine triethyl ammonium salt (Dye 1) and 3,3'-di(3-sulfopropyl)-4,5,4',5'-dibenzo-9-methyl-thiacarbocyanine triethyl ammonium salt (Dye 2)) in aqueous solution have been studied by using absorption spectroscopy, fluorescence spectroscopy, and 1H- and 23Na-NMR measurements. It is found that the J-aggregation of two dyes can be promoted by the addition of NaCl and that the effective coherence length of the J-aggregate is shorter than that obtained without NaCl. Fluorescence spectra demonstrate that the fluorescence intensities of the J-aggregates of two dyes are quenched by addition of NaCl. This is consistent with the decrease of the effective coherence length of J-aggregates of the two dyes in the presence of NaCl. 1H-NMR spectra of two dyes show that the Na(+) ions penetrate into the J-aggregates and replace the counterion (triethylammonium ions) in two dyes. The measurements of the chemical shifts of 23Na nuclei provide further information about the interaction between the Na(+) ions and dye anions in the J-aggregates of the two dyes. Due to this interaction, the electrostatic repulsion between the dye anions in the J-aggregates can be reduced and thus accelerate the aggregation of the two dyes in the presence of NaCl. The apparent association constants between Na(+) ions and dye molecules in J-aggregates of Dye 1 and Dye 2 estimated from the measured chemical shifts of 23Na nuclei are about 2.38 M(-1) and 1.35 M(-1), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9797(02)00187-x | DOI Listing |
Nanophotonics
August 2024
Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore 637371, Singapore.
Chemistry
November 2024
Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
The self-assembly process is governed by the individual constituents of molecules through precise non-covalent interactions. Amphiphilic cyanines are intriguing in supramolecular chemistry due to the large polarizability of their delocalized π-electron systems, their tuneable optical properties and their ability to form well-defined self-assembled structures in different media. Here we present the synthesis of a novel tetrahydroxy amphiphilic carbocyanine dye with perfluoro alkylated chains -(CH)-(CF)-CF as hydrophobic segments and aminoproanediol as hydrophilic segment.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom; China Medical University and Queen's University Joint College, Shenyang, People's Republic of China.
ACS Nano
October 2024
Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, P. R. China.
Constructing J-aggregated organic dyes represents a promising strategy for obtaining biomedical second near-infrared (NIR-II) emissive materials, as they exhibit red-shifted spectroscopic properties upon assembly into nanoparticles (NPs) in aqueous environments. However, currently available NIR-II J-aggregates primarily rely on specific molecular backbones with intricate design strategies and are susceptible to fluorescence quenching during assembly. A facile approach for constructing bright NIR-II J-aggregates using prevalent donor-acceptor (D-A) molecules is still lacking.
View Article and Find Full Text PDFChem Sci
September 2024
Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A Parma 43124 Italy
Some achiral cyanine dyes form well-ordered chiral assemblies exhibiting pronounced Circular Dichroism (CD) and Circularly Polarized Luminescence (CPL). Notably, achiral C8O3 cyanines self-assemble into tubular J-aggregates, which further organize into bundles displaying bisignate CD spectrum - hallmark of an exciton coupled system - and an unusual bisignated CPL. In contrast, the tubular aggregates display a monosignate CD spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!