The mechanisms of the antitumor reactions of 2-methylnaphtho[2,3-b]furan-4,9-dione (FNQ3) to human lung adenocarcinoma A549 cells were investigated. A549 cells that received 1.25 microg/ml FNQ3 (IC(50) at 0.35 microg/ml) developed intensive mitochondrial H(2)O(2) production at 1 h. Selective structural mitochondrial swelling, alteration of mitochondrial membrane potential, and cytochrome c and caspase-9 release from the mitochondria occurred 18-24 h later. alpha-Tocopherol inhibited the alteration of both mitochondrial permeability and the leakage of procaspase-9. The caspase-9 was then activated in the cytosol. The expression of Bcl-2 oncoprotein was suppressed by FNQ3, and resulted in apoptosis. The higher dose of 5 microg/ml induced necrosis via severe mitochondrial breakage. These results showed that FNQ3 targets the mitochondria of A549 cells to produce a reactive oxygen species resulting in apoptosis and necrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0361-090x(02)00174-5DOI Listing

Publication Analysis

Top Keywords

a549 cells
12
alteration mitochondrial
8
mitochondrial
6
mitochondrial damage
4
damage prior
4
prior apoptosis
4
apoptosis furanonaphthoquinone
4
furanonaphthoquinone treated
4
treated lung
4
lung cancer
4

Similar Publications

Alpha-Lipoic Acid-Mediated Inhibition of LTB Synthesis Suppresses Epithelial-Mesenchymal Transition, Modulating Functional and Tumorigenic Capacities in Non-Small Cell Lung Cancer A549 Cells.

Curr Ther Res Clin Exp

November 2024

Laboratorio de Oncología Celular y Molecular. Departamento de Oncología Básico-Clínica. Facultad de Medicina. Universidad de Chile, Santiago, Chile.

Background: Leukotriene B (LTB) plays a crucial role in carcinogenesis by inducing epithelial-mesenchymal transition (EMT), a process associated with tumor progression. The synthesis of LTB is mediated by leukotriene A hydrolase (LTAH), and it binds to the receptors BLT and BLT. Dysregulation in LTB production is linked to the development of various pathologies.

View Article and Find Full Text PDF

Saline-tolerant medicinal plants possess novel chemical constituents with high bioactivity because of their unique secondary metabolic pathways. an aquatic plant found in the coastal wetlands of the Yellow River Delta, was collected and studied in the present work. Ten drimane-type sesquiterpenoids and four triterpenoids, including six new ones (sinenseines A-F), were isolated from a whole plant of for the first time.

View Article and Find Full Text PDF

Introduction: Lung cancer is recognized as a highly lethal disease, demanding swift and accurate solutions. Previous analysis showed the cytotoxic impact of extract containing ergost-22-en-3-one and ergost-7-en3-ol against A549 lung cancer cells, with an IC value of 9.38 μg/mL.

View Article and Find Full Text PDF

Multi-organelle imaging allows the visualization of multiple organelles within a single cell, allowing monitoring of the cellular processes in real-time using various fluorescent probes that target specific organelles. However, the limited availability of fluorophores and potential spectral overlap present challenges, and many optimized designs are still in nascency. In this work, we synthesized various sulfonamide-based organic fluorophores that emit in the blue, green, and red regions to target different sub-cellular organelles.

View Article and Find Full Text PDF

The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!