The protective effects of bacteriophages were assessed against experimental Staphylococcus aureus infection in mice. Of the S. aureus phages isolated in the study, phi MR11 was representatively used for all testing, because its host range was the most broad and it carries no genes for known toxins or antibiotic resistance. Intraperitoneal injections (8 x 10(8) cells) of S. aureus, including methicillin-resistant bacteria, caused bacteremia and eventual death in mice. In contrast, subsequent intraperitoneal administration of purified phi MR11 (MOI > or = 0.1) suppressed S. aureus-induced lethality. This lifesaving effect coincided with the rapid appearance of phi MR11 in the circulation, which remained at substantial levels until the bacteria were eradicated. Inoculation with high-dose phi MR11 alone produced no adverse effects attributable to the phage. These results uphold the efficacy of phage therapy against pernicious S. aureus infections in humans and suggest that phi MR11 may be a potential prototype for gene-modified, advanced therapeutic S. aureus phages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/374001 | DOI Listing |
FEMS Microbiol Lett
July 2008
Department of Microbiology and Infection, Kochi Medical School, Nankoku, Kochi, Japan.
J Infect Dis
October 2007
Department of Biochemistry, Kochi Medical School, Nankoku 783-8505, Japan.
We report the successful purification of a cloned lysin encoded by the novel Staphylococcus aureus bacteriophage phi MR11. The lysin, designated MV-L, rapidly and completely lysed cells of a number of S. aureus strains tested, including methicillin-resistant S.
View Article and Find Full Text PDFJ Infect Dis
February 2003
Department of Microbiology, Kochi Medical School, Kochi, Japan.
The protective effects of bacteriophages were assessed against experimental Staphylococcus aureus infection in mice. Of the S. aureus phages isolated in the study, phi MR11 was representatively used for all testing, because its host range was the most broad and it carries no genes for known toxins or antibiotic resistance.
View Article and Find Full Text PDFA new isolate of Nocardia opaca was obtained by enrichment culture for aerobic lithoautotrophic growth on CO2 and H2. This strain, MR22, is very similar to N. opaca MR11 (formerly 1b) in functioning as a donor for genetic information determining the ability to grow lithoautotrophically (Aut character) in matings with Aut- strains of N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!