[Adenosine protects cardiomyocytes from hypoxia/reoxygenation injury].

Sheng Li Xue Bao

Department of Cardiology, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022.

Published: February 2003

The aim of this study was to investigate the protective effect of adenosine (ADO) on cardiomyocytes following hypoxia/reoxygenation (H/R) and its molecular mechanism. Primary cultured cardiomyocytes of neonatal rats were divided into two groups, namely H/R (control) and ADO (1.0 micromol/L) groups. The morphologic changes in cardiomyocytes were observed under an inverted phase-contrast microscope. The following parameters of the two groups were determined: lactate dehydrogenase (LDH) activity, intracellular calcium concentration and malondialdehyde (MDA) content. Tumor necrotic factor (TNF-alpha) assay was performed using an ELISA kit and NF-kappaB in the nucleus was analyzed by electrophoretic mobility shift assay (EMSA). The results are as follows: (1) after H/R injury, cardiomyocytes contracted, tending to get round in shape and its pseudopods decreased, while marked morphological changes were not observed in ADO group; (2) LDH leakage maintained at a lower level in ADO group than that in the control group during H/R (both P<0.01); (3) ADO significantly reduced the concentration of calcium in cells and prevented calcium overload during H/R (both P<0.01); (4) ADO markedly reduced the content of MDA during H/R (both P<0.01); (5) ADO inhibited the production of TNF-alpha during H/R (both P<0.01); and (6) ADO down-regulated NF-kappaB binding activity of cardiomyocytes during H/R (both P<0.01) The results suggest that (1) exogenous ADO attenuates H/R injury of cultured cardiomyocytes; (2) exogenous ADO inhibits the production of TNF-alpha after H/R injury; (3) exogenous ADO prevents the activation of NF-kappaB, which may be the molecular mechanism of down-regulation of TNF-alpha expression.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cardiomyocytes hypoxia/reoxygenation
8
ado group
8
cardiomyocytes
5
[adenosine protects
4
protects cardiomyocytes
4
hypoxia/reoxygenation injury]
4
injury] aim
4
aim study
4
study investigate
4
investigate protective
4

Similar Publications

Puerarin Protects Myocardium From Ischaemia/Reperfusion Injury by Inhibiting Ferroptosis Through Downregulation of VDAC1.

J Cell Mol Med

December 2024

Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Sevoflurane (Sev) has a cardioprotective role in myocardial ischemia/reperfusion injury (MI/RI), but its mechanism has not been fully elucidated. This study aimed to investigate whether the circ_CDR1as/miR-671-5p/HMGA1 axis mediates the cardioprotective effect of Sev in MI/RI. Cardiomyocytes underwent hypoxia/reoxygenation (H/R) treatment was used to simulate MI/RI in vitro.

View Article and Find Full Text PDF

Sevoflurane attenuates hypoxia/reoxygenation-induced cardiomyocyte injury by regulating miR-4454.

Toxicol Res (Camb)

December 2024

Department of Cardiovascular Medicine, Ganzhou People's Hospital, No. 16 Meiguan Avenue, Ganzhou 341000, China.

Background: Sevoflurane (Sevo) prevents hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury. The expression of miR-4,454 was increased in individuals experiencing an acute myocardial infarction.

Objective: The purpose of current investigation was to delved into whether the effects of Sevo on cardiomyocytes are mediated through regulation of miR-4,454 expression.

View Article and Find Full Text PDF

Purpose: Ciprofol is a novel intravenous anesthetic that has been increasingly used in clinical anesthesia and sedation. Studies suggested that ciprofol reduced oxidative stress and inflammatory responses to alleviate cerebral ischemia/reperfusion (I/R) injury, but whether ciprofol protects the heart against I/R injury and the mechanisms are unknown. Herein, we assessed the effects of ciprofol on ferroptosis during myocardial I/R injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!