The endoplasmic reticulum (ER) is emerging as a contributory component of cell death after ischemia. Since caspase-12 has been localized to the ER and is a novel signal for apoptosis, we examined the message levels and protein expression of caspase-12 after cerebral ischemia in vivo. Animals underwent permanent middle cerebral artery occlusion (MCAO) and were sacrificed 24 h after ischemia. Protein analysis revealed a significant increase in caspase-12 and a corresponding up-regulation of caspase-12 mRNA in the ischemia group compared with that in the sham group. Immunohistochemical analysis revealed diffuse positive immunostaining of caspase-12 throughout the striatum and cerebral cortex in animals that underwent ischemia, with more intense caspase-12 immunostaining in the striatum than in the cortex after ischemia. These results demonstrate that cerebral ischemia initiates an ER-based stress response that results in the transcriptional up-regulation and corresponding increased expression of caspase-12 protein, and may provide a new area for therapeutic intervention to ameliorate outcomes following stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-200302100-00004DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
ischemia
8
expression caspase-12
8
cerebral ischemia
8
animals underwent
8
analysis revealed
8
caspase-12
7
activation caspase-12
4
caspase-12 endoplasmic
4
reticulum resident
4

Similar Publications

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Introduction: The cardiotoxicity and subsequent Heart Failure (HF) induced by Doxorubicin (DOX) limit the clinical application of DOX. Valsartan (Val) is an angiotensin II receptor blocker that could attenuate the HF induced by DOX. However, the underlying mechanism of Val in this process is not fully understood.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway.

Drug Des Devel Ther

January 2025

Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Objective: Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells.

View Article and Find Full Text PDF

Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!