Ganglioside GM(3) (NeuAcalpha3Galbeta4Glcbeta1Cer) is known to regulate the proliferation of many cell types and to maintain the charge-selective filtration barrier of glomeruli. Based on these, this study examined whether altered expression of ganglioside GM(3) was pathologically related with glomerular hypertrophy and proteinuria occurring in diabetic human and rat kidneys. Diabetic rats were produced by intraperitoneal injection of streptozotocin (80 mg/kg, I.P.). At 15 days after the induction of diabetes, glomerular volume and fibrotic matrix were dramatically elevated, whereas glomerular sialic acid contents were significantly reduced compared with control. Based upon mobility on high-performance thin-layer chromatography (HPTLC) and reactivity to anti-GM(3) monoclonal antibody, normal glomeruli showed a complex ganglioside pattern that consisted of six different components of gangliosides, mainly GM(3), and diabetes caused a severe reduction of these gangliosides with apparent changes in the composition of major ganglioside GM(3). Semi-quantitative analysis by HPTLC showed that ganglioside GM(3) was reduced to 57% of control in diabetic glomeruli. A prominent immunofluorescence microscopy showed a dramatic disappearance of GM(3) expression in diabetic glomeruli. These results indicate that diabetic glomeruli can be characterized by decreases of glomerular sialic acid content and ganglioside GM(3) expression, which may cause loss of charge-selective filtration barrier in renal glomeruli. These changes may be account, at least in part, for the development of glomerular hypertrophy and proteinuria seen in the early stage of diabetic glomerulopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0024-3205(03)00090-0 | DOI Listing |
Emerg Microbes Infect
December 2024
Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany.
Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans.
View Article and Find Full Text PDFCell Death Differ
November 2024
Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, Milan, Italy.
Adv Sci (Weinh)
November 2024
Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan.
In the present work, bacterial glycosyltransferases are utilized to construct ganglioside glycans in a convergent approach via a sugar‒nucleotide regeneration system and one-pot multienzyme reactions. Starting from β-lactoside enables the diversification of both the glycan moieties and the linkages in the lower α-arm and upper β-arm. Overall, a comprehensive panel of 24 natural a-series (GM3, GM2, GM1a, GD1a, GT1a, and fucosyl-GM1), b-series (GD3, GD2, GD1b, GT1b, and GQ1b), c-series (GT3, GT2, GT1c, GQ1c, and GP1c), α-series (GM1α, GD1aα, and GT1aα), and o-series (GA2, GA1, GM1b, GalNAc-GM1b, and GD1c) ganglioside glycans are prepared, which are suitable for biological studies and further applications.
View Article and Find Full Text PDFJ Nanobiotechnology
October 2024
Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
Background: Adoptive cell cancer therapies aim to re-engineer a patient's immune cells to mount an anti-cancer response. Chimeric antigen receptor T and natural killer cells have been engineered and proved successful in treating some cancers; however, the genetic methods for engineering are laborious, expensive, and inefficient and can cause severe toxicities when they over-proliferate.
Results: We examined whether the cell-killing capacity of activated T and NK cells could be targeted to cancer cells by anchoring antibodies to their cell surface.
Cells
October 2024
Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!