Human embryonic stem (hES) cells are pluripotent cells derived from the inner cell mass of the early preimplantation embryo. An efficient strategy for stable genetic modification of hES cells may be highly valuable for manipulating the cells in vitro and may promote the study of hES cell biology, human embryogenesis, and the development of cell-based therapies. Here, we demonstrate that vectors derived from self-inactivating (SIN) human immunodeficiency virus type 1 (HIV-1) are efficient tools for stable genetic modification of hES cells. Transduction of hES cells by a modified vector derived from SIN HIV-1 and containing the woodchuck hepatitis regulatory element (WPRE) and the central polypurine tract (cPPT) sequence facilitated stable transgene expression during prolonged (38 weeks) undifferentiated proliferation in vitro. Southern blot analysis revealed that the viral vector had integrated into the host cells' DNA. Transgene expression was maintained throughout differentiation into progeny of all three germ layers both in vitro and in vivo in teratomas. Thus, the transduced hES cells retained the capability for self-renewal and their pluripotent potential. Genetic modification of hES cells by lentiviral vectors provides a powerful tool for basic and applied research in the area of human ES cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1525-0016(02)00047-3 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.
View Article and Find Full Text PDFCirc Res
January 2025
Department of Integrative Physiology (W.G.P., J.F.M.), Baylor College of Medicine, Houston, TX.
We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
January 2025
Institute of Developmental and Regenerative Medicine, University of Oxford, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Headington, Oxford, OX3 7TY, UK.
Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!