Random amplified polymorphic DNA (RAPD) analysis has been used to determine the relatedness of 73 antibiotic-producing soil Streptomyces isolates that were recovered from different soil habitats in Jordan based on their RAPD-PCR fingerprints. Genetic polymorphisms between these isolates showed three common bands of 2777, 800 and 250 bp shared by approximately (95%) of them. Some specific bands were also observed. Further analysis of RAPD patterns with the UPGMA resulted in clustering the tested isolates into two main super clusters. Super cluster I was more homogenous than super cluster II and contained all the reference strains. However, super cluster II consists of unrelated isolates within five small groups. As RAPD fingerprints of the tested isolates linked to their phenotypes, differentiation between isolates with different cultural properties was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.200390000DOI Listing

Publication Analysis

Top Keywords

super cluster
12
antibiotic-producing soil
8
soil streptomyces
8
tested isolates
8
isolates
6
genotypic phenotypic
4
phenotypic characteristics
4
characteristics antibiotic-producing
4
streptomyces investigated
4
investigated rapd-pcr
4

Similar Publications

Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.

View Article and Find Full Text PDF

Icosahedral gold clusters with high-symmetry geometry and magic electronic shells are potential candidates for cluster-assembling, while their assembling rules are still awaiting further investigation. In this work, we use the all-metal icosahedral M@Au as a building block to assemble a series of bi-, tri-, tetra-, and penta-superatomic molecules with diverse superatomic bonding patterns via face-fusion, aiming to systemically explore the bonding rule of superatoms. Chemical bonding analyses indicate that these bi-, tri-, tetra-, and penta-superatomic molecules [M@Au] (M = Re, W, Ta, Ti, Hf, Ir, and Pt) can be considered electronic analogues to Cl, O, N, CO, O, CO, NCl, and CF molecules with single, double, triple, and multicenter bonds, respectively.

View Article and Find Full Text PDF

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Understanding the complex activation patterns of brain regions during motor tasks is crucial. Integrated functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) offers advanced insights into how brain activity fluctuates with motor activities. This study explores neuronal activation patterns in the cerebral cortex during active, passive, and imagined wrist movements using these functional imaging techniques.

View Article and Find Full Text PDF

High-throughput untargeted metabolomics reveals metabolites and metabolic pathways that differentiate two divergent pig breeds.

Animal

December 2024

Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy. Electronic address:

Metabolomics can describe the molecular phenome and may contribute to dissecting the biological processes linked to economically relevant traits in livestock species. Comparative analyses of metabolomic profiles in purebred pigs can provide insights into the basic biological mechanisms that may explain differences in production performances. Following this concept, this study was designed to compare, on a large scale, the plasma metabolomic profiles of two Italian heavy pig breeds (Italian Duroc and Italian Large White) to indirectly evaluate the impact of their different genetic backgrounds on the breed metabolomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!