Influence of interleukin-12 receptor beta1 polymorphisms on tuberculosis.

Hum Genet

Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Published: March 2003

Host genetic factors may be important determinants of susceptibility to tuberculosis, and several candidate gene polymorphisms have been shown to date. A series of recent reports concerning rare human deficiencies in the type-1 cytokine pathway suggest that more subtle variants of relevant genes may also contribute to susceptibility to tuberculosis at the general population level. To investigate whether polymorphisms in the interleukin-12 receptor (IL-12R) gene predispose individuals to tuberculosis, we studied these genes by single-strand conformational polymorphism analysis and direct sequencing. Although no common polymorphisms could be identified in the IL-12R beta 2 gene ( IL-12RB2), we confirmed four single nucleotide polymorphisms (SNPs; 641A-->G, 684C-->T, 1094T-->C, and 1132G-->C) causing three missense variants (Q214R, M365T, G378R) and one synonymous substitution in the extracellular domain of the IL-12R beta 1 gene ( IL12RB1). All SNPs were in almost perfect linkage disequilibrium (D'=0.98), and two common haplotypes of IL12RB1(allele 1: Q214-M365-G378; allele 2: R214-T365-R378) were revealed. Polymerase chain reaction/restriction fragment length polymorphism and sequence analyses were used to type IL12RB1polymorphisms in 98 patients with tuberculosis and 197 healthy controls in Japanese populations. In our case-control association study of tuberculosis, the R214-T365-R378 allele (allele 2) was over-represented in patients with tuberculosis, and homozygosity for R214-T365-R378 (the 2/2 genotype) was significantly associated with tuberculosis (odds ratio: 2.45; 95% CI: 1.20-4.99; P=0.013). In healthy subjects, homozygotes for R214-T365-R378 had lower levels of IL-12-induced signaling, according to differences in cellular responses to IL-12 between two haplotypes. These data suggest that the R214-T365-R378 allele, i.e., variation in IL12RB1, contribute to tuberculosis susceptibility in the Japanese population. This genetic variation may predispose individuals to tuberculosis infection by diminishing receptor responsiveness to IL-12 and to IL-23, leading to partial dysfunction of interferon-gamma-mediated immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-002-0873-5DOI Listing

Publication Analysis

Top Keywords

tuberculosis
10
interleukin-12 receptor
8
susceptibility tuberculosis
8
predispose individuals
8
individuals tuberculosis
8
il-12r beta
8
beta gene
8
patients tuberculosis
8
r214-t365-r378 allele
8
polymorphisms
5

Similar Publications

The most significant progress in addressing the HIV/AIDS epidemic has been the development of antiretroviral therapy (ART). However, ensuring a high degree of treatment adherence is necessary to prevent resistance and disease progression. We conducted a cross-sectional study to evaluate adherence to ART through the calculation of the medication possession ratio (MPR) and to identify risk factors for suboptimal adherence in a cohort of HIV-positive patients receiving care at a Colombian healthcare institution across 16 cities.

View Article and Find Full Text PDF

Background: Tuberculosis is one of the leading causes of death from infectious diseases in the world, with approximately 25% of the global population having latent tuberculosis infection. Secondhand smoke exposure has been recognised as a significant risk factor in the development of active Tuberculosis in individuals with latent tuberculosis infection.

Study Design And Methods: This study used the Systematic Literature Review method based on PRISMA guidelines.

View Article and Find Full Text PDF

Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!