Fatty acid analysis of phospholipid compositions of lung and pancreas cells from a cystic fibrosis transmembrane regulator (CFTR) negative mouse (cftr(-/-))suggested that a decreased concentration of docosahexaenoate (22:6(n-3)) and increased arachidonate (20:4(n-6)) may be related to the disease process in cystic fibrosis (CF). Consequently, we have determined compositions of the major phospholipids of lung, pancreas, liver, and plasma from a different mouse model of CF, the cftr(tm1HGU/tm1HGU) mouse, compared with ZTM:MF-1 control mice. Electrospray ionization mass spectrometry permitted the quantification of all of the individual molecular species of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylglycerol (PtdGly), phosphatidylserine (PtdSer), and phosphatidylinositol (PtdIns). There was no deficiency of 22:6(n-3) in any phospholipid class from lung, pancreas, or liver from mice with the cftr(tm1HGU/tm1HGU). Instead, the concentration of 20:4(n-6) was significantly decreased in plasma PtdCho species and in pancreas and lung species of PtdEtn, PtdSer, and PtdIns. These results demonstrate the variability of membrane phospholipid compositions in different mouse models of CF and suggest that in cftr(tm1HGU/tm1HGU) mice, the apparent deficiency was of 20:4n-6- rather than of 22:6n-3-containing phospholipid species. They highlight a need for detailed phospholipid molecular species analysis of cells expressing mutant CFTR from children with CF before the therapeutic effects of administering high doses of 22:6(n-3)-containing oils to children with CF can be fully evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1203/01.PDR.0000049937.30305.8A | DOI Listing |
Clin Med Insights Case Rep
January 2025
Infectious Disease Unit, Augusta Victoria Hospital, East Jerusalem, Palestine.
Introduction: is a common helminthic infection characterized by fecal-oral route of transmission. Commonly, it affects the gastrointestinal tract. However, in significantly rare cases, it can affect unexpected body regions, such as biliary tree, pancreas, and the lung.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University of Minnesota, Minnesota, MN, United States.
Neuroendocrine neoplasms (NENs) encompass a diverse set of malignancies with limited precision therapy options. Recently, therapies targeting DLL3 have shown clinical efficacy in aggressive NENs, including small cell lung cancers and neuroendocrine prostate cancers. Given the continued development and expansion of DLL3-targeted therapies, we sought to characterize the expression of DLL3 and identify its clinical and molecular correlates across diverse neuroendocrine and non-neuroendocrine cancers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA.
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.
View Article and Find Full Text PDFPlasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!