Hyperhomocysteinemia is associated with endothelial dysfunction, although the underlying mechanism is unknown. Previous studies have shown that nitric oxide (NO) plays an important role in the regulation of systemic and renal hemodynamics. This study investigated whether hyperhomocysteinemia induces renal oxidative stress and promotes renal dysfunction involving disturbances of the NO-pathway in Wistar rats. During 8 wk, control (C) and hyperhomocysteinemic (HYC) groups had free access to tap water and homocysteine-thiolactone (HTL, 50 mg/kg per d), respectively. At 8 wk, plasma homocysteine concentration, renal superoxide anion (O(2)), nitrotyrosine, and nitrite+nitrate levels, and renal function were measured. To assess NO involvement, the responses to L-Arginine (L-Arg, 300 mg/kg) and N(G)-nitro-L-arginine-methyl-ester (L-NAME, 20 microg/kg per min for 60 min) were analyzed. The HYC group showed higher homocysteine concentration (7.6 +/- 1.7 versus 4.9 +/- 1.0 micromol/L; P < 0.001), (O(2) production (157.92 +/- 74.46 versus 91.17 +/- 29.03 cpm. 10(3)/mg protein), and nitrite+nitrate levels (33.4 +/- 5.1 versus 11.7 +/- 4.3 micro mol/mg protein; P < 0.001) than the control group. Western blot analyses showed a nitrotyrosine mass 46% higher in the HYC group than in the controls. Furthermore, the HYC group showed lower GFR, renal plasma flow (RPF), and higher renal vascular resistance (RVR) than the controls. After L-Arg administration, the responses of GFR, RPF, and RVR were attenuated by 36%, 40%, and 50%, respectively; after L-NAME, the responses of RPF and RVR were exaggerated by 79% and 112%, respectively. This suggests a reduced NO bioavailability to produce vasodilation and an enhanced sensitivity to NO inhibition. In conclusion, hyperhomocysteinemia induces oxidative stress, NO inactivation, and renal dysfunction involving disturbances on the NO-pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.asn.0000053419.27133.23 | DOI Listing |
Nutrients
December 2024
Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41004 Sevilla, Spain.
Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (HCys) levels, is associated with increased risks of neurovascular diseases such as stroke or hydrocephalus. HHcy promotes oxidative stress, neuroinflammation, and endothelial dysfunction, disrupting the blood-brain barrier and accelerating neurodegeneration. These processes highlight HCys as both a biomarker and a potential therapeutic target in vascular-related neurological disorders.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
Autophagy is a protective mechanism of cardiomyocytes. Hyperhomocysteinemia (HHcy) elevates oxidative and nitrosative stress levels, leading to an abnormal increase in nitration protein, possibly leading to abnormal autophagy regulation in cardiomyocytes. However, the regulatory effect of HHcy on autophagy at the post-translational modification level is still unclear.
View Article and Find Full Text PDFFront Immunol
January 2025
Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China.
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting 6-20% of women of childbearing age worldwide. Immune cell imbalance and dysregulation of inflammatory factors can lead to systematic low-grade chronic inflammation (SLCI), which plays a pivotal role in the pathogenesis of PCOS. A significant higher infiltration of immune cells such as macrophages and lymphocytes and pro-inflammatory factors IL-6 and TNF-α has been detected in PCOS organ systems, impacting not only the female reproductive system but also other organs such as the cardiovascular, intestine, liver, thyroid, brain and other organs.
View Article and Find Full Text PDFBiol Direct
December 2024
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Peroxisome proliferator-activated receptor-γ (PPARγ) is a critical regulator of adipogenesis and bone metabolism, playing complex roles in osteoporosis. This study investigates the effects of taurine and homocysteine on PPARγ, focusing on their roles in osteoclastogenesis and bone health. In-silico analyses, including molecular docking and molecular dynamic simulations, revealed that both taurine and homocysteine bind competitively to the PPARγ ligand-binding domain, exhibiting distinctive antagonistic modes, including destabilization of PPARγ's key helices H3, H4/5, H11, and H12.
View Article and Find Full Text PDFBiomolecules
October 2024
Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!