A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1). | LitMetric

In mammalian organs under normoxic conditions, O2 concentration ranges from 12% to <0.5%, with O2 approximately 14% in arterial blood and <10% in the myocardium. During mild hypoxia, myocardial O2 drops to approximately 1% to 3% or lower. In response to chronic moderate hypoxia, cells adjust their normoxia set point such that reoxygenation-dependent relative elevation of PO2 results in perceived hyperoxia. We hypothesized that O2, even in marginal relative excess of the PO2 to which cardiac cells are adjusted, results in activation of specific signal transduction pathways that alter the phenotype and function of these cells. To test this hypothesis, cardiac fibroblasts (CFs) isolated from adult murine ventricle were cultured in 10% or 21% O2 (hyperoxia relative to the PO2 to which cells are adjusted in vivo) and were compared with those cultured in 3% O2 (mild hypoxia). Compared with cells cultured in 3% O2, cells that were cultured in 10% or 21% O2 demonstrated remarkable reversible G2/M arrest and a phenotype indicative of differentiation to myofibroblasts. These effects were independent of NADPH oxidase function. CFs exposed to high O2 exhibited higher levels of reactive oxygen species production. The molecular signature response to perceived hyperoxia included (1) induction of p21, cyclin D1, cyclin D2, cyclin G1, Fos-related antigen-2, and transforming growth factor-beta1, (2) lowered telomerase activity, and (3) activation of transforming growth factor-beta1 and p38 mitogen-activated protein kinase. CFs deficient in p21 were resistant to such O2 sensitivity. This study raises the vital broad-based issue of controlling ambient O2 during the culture of primary cells isolated from organs.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.res.0000056770.30922.e6DOI Listing

Publication Analysis

Top Keywords

oxygen sensing
4
sensing primary
4
primary cardiac
4
cardiac fibroblasts
4
fibroblasts key
4
key role
4
role p21waf1/cip1/sdi1
4
p21waf1/cip1/sdi1 mammalian
4
mammalian organs
4
organs normoxic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!