Development of reliable and accurate methodologies for determination of xenobiotic hepatic biotransformation rate and capacity parameters is important to the derivation of precise physiologically-based toxicokinetic (PB-TK) models. Biotransformation data incorporated into PB-TK models has, for the most part, depended on in vitro techniques designed to mimic the in vivo environment; however, data from direct in vitro/in vivo comparisons is limited. In this investigation we describe for the first time a method using in vivo microdialysis (MD) to qualitatively assess hepatic xenobiotic biotransformation of phenol in an unanesthetized fish. MD probes were surgically implanted into the livers of adult rainbow trout which were subsequently confined to respirometer-metabolism chambers. Phenol (1-300 mM) was delivered directly to the liver via the MD probe at a perfusion rate of 1 microl min(-1) which consistently resulted in a relative delivery of 77-85% of the phenol in the perfusate to the tissue over a 3 day experimental time frame. Location of the probe within the liver was also shown to have no effect on the delivery of phenol or on the type or quantity of phase I metabolites formed. Production of hydroquinone (HQ) and catechol (CAT), the primary phase I metabolites of phenol, was monitored through direct sampling of the hepatic extracellular fluid space via the MD probe. HQ and CAT production increased with increasing time of perfusion and with increasing concentration of phenol delivered to the liver. In the future, data obtained through in vivo MD will be useful in resolving uncertainties in biotransformation rate and capacity parameters, which are central to fish PB-TK modeling of chemical disposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0166-445x(02)00109-1 | DOI Listing |
BMC Genomics
January 2025
Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.
Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia.
In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.
View Article and Find Full Text PDFGenes Dis
March 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Hepatic ischemia-reperfusion injury is an unavoidable surgical complication of liver transplantation and the leading cause of poor graft function and increased mortality post-transplantation. Multiple mechanisms have been implicated in ischemia-reperfusion injury; however, the characteristic changes at the transcriptional and metabolic levels in the early, intermediate, and late phases of ischemia-reperfusion injury remain unclear. In the study, mice underwent laparotomy following anesthesia, and the blood vessels of the liver were clipped using a vascular clamp to form 70% warm ischemia of the liver.
View Article and Find Full Text PDFTurk J Biol
October 2024
Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkiye.
Background/aim: Melanoma arises from the uncontrolled multiplication of melanocytes, and poses an escalating global health concern. Despite the importance of early detection and surgical removal for effective treatment, metastatic melanoma poses treatment challenges, with limited options. Among optional therapies, including chemotherapy and immunotherapy, all-trans retinoic acid (ATRA), a natural metabolite of vitamin A, has shown promise in treating melanoma by inducing differentiation, apoptosis, growth arrest, and immune modulation in melanoma cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!