Nisin is a natural antimicrobial peptide produced by Lactococcus lactis and widely employed as food preservative. Its low solubility in neutral aqueous solutions, its instability at physiological pH and its rapid breakdown by proteolytic enzymes has limited its use for processed foods (processed cheese, milk and derivatives, canned vegetables). The conjugation to poly(ethylene glycol) (PEG) could improve its solubility and protect it towards enzymes present in non optimally processed food. We report the synthesis of a PEG-nisin conjugate, and the microbiology assays against some bacterial cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0014-827X(02)01301-0DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptide
8
pegylation antimicrobial
4
peptide nisin
4
nisin problems
4
problems perspectives
4
perspectives nisin
4
nisin natural
4
natural antimicrobial
4
peptide produced
4
produced lactococcus
4

Similar Publications

Construction and bacteriostatic effect analyses of a recombinant thermostable Newcastle disease virus expressing cecropin AD.

Vet Microbiol

January 2025

Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China. Electronic address:

Cecropin AD (CAD), a hybrid antimicrobial peptide composed of the first 11 residues of cecropin A and last 26 residues of cecropin D, is a promising antibiotic candidate. Therefore, an efficient and convenient method for producing CAD is necessary for commercial applications. The Newcastle disease virus (NDV) has been widely used as a platform for gene delivery and exogenous protein expression.

View Article and Find Full Text PDF

Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Inappropriate and excessive use of antibiotics is responsible for the rapid development of antimicrobial resistance, which is associated with increased patient morbidity and mortality. There is an urgent need to explore new antibiotics or alternative antimicrobial agents. a commensal microorganism but is also responsible for numerous infections.

View Article and Find Full Text PDF

: Excessive body fatness is the basis of many diseases, especially civilization-related ones. The aim of this study is to analyze the body composition and serum levels of selected antimicrobial peptides (AMPs) in patients with basal cell carcinoma (BCC), in comparison to healthy controls (HCs), and investigate whether any specific parameter significantly increases the risk of BCC development. : The body composition and measurements of serum levels of cathelicidin and human-beta-defensin-2 were analyzed in a group of 100 subjects (50 patients with BCC and 50 HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!