Previously, a series of clonal alloantigen-dependent T cell lines established from the channel catfish revealed distinctly different TCR beta rearrangements. Here, a follow-up study of the junctional diversity of these TCR gene rearrangements focuses on characterization of the genomic organization of the TCRB locus. Surprisingly, a total of 29 JB genes and two substantially different CB genes were identified downstream of a single DB gene. This is in contrast to the situation in mammals, where two clusters of a DB gene, six or seven JB genes, and a CB gene are found in tandem. The catfish CB genes are approximately 36% identical at the amino acid level. All 29 catfish JB gene segments appear functional. Thirteen were used in the 19 cDNAs analyzed, of these eight were used by the 11 catfish clonal alloantigen-dependent T cell lines. As might be expected, CDR3 diversity is enhanced by N-nucleotide additions as well as nucleotide deletions at the V-D and D-J junctions. Taken together, compared with that in mammals, genomic sequencing of the catfish TCR DB-JB-CB region reveals a unique locus containing a greater number of JB genes and two distinct CB genes.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.170.5.2573DOI Listing

Publication Analysis

Top Keywords

channel catfish
8
reveals unique
8
clonal alloantigen-dependent
8
alloantigen-dependent cell
8
cell lines
8
catfish
6
genes
6
gene
5
cell receptor
4
receptor beta
4

Similar Publications

Expression profiles of NOD1 and NOD2 and pathological changes in gills during Flavobacterium columnare infection in yellow catfish, Tachysurus fulvidraco.

J Fish Biol

January 2025

Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.

NOD-like receptors are significant contributors to the immune response of fish against different types of pathogen invasion. NOD1 and NOD2 genes of yellow catfish (Tachysurus fulvidraco) were identified and characterized in this study. Yellow catfish NOD1 and NOD2 have open reading frames (ORFs) of 2841 and 2949 bp, encoding 946 and 982 amino acids, respectively.

View Article and Find Full Text PDF

The Weberian apparatus is a hearing specialization unique to the otophysan fishes, and an unexpected degree of morphological variation exists in species of the Noturus catfishes. Our aim in this study is to investigate relationships between morphological variations and ecology that may drive this variation. Sampling 48 specimens representing 25 species, we investigated morphological diversity and accounted for ecological variables using landmark-based 3D geometric morphometrics and x-ray-based computed tomography (CT) images.

View Article and Find Full Text PDF

Lifecycle of an introduced (Bucephalidae) trematode in the Tone River system, Japan.

J Helminthol

January 2025

Toho University, Faculty of Science, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan.

During 2021 through 2023, the golden mussel and freshwater fishes were sampled from 28 sites in the Tone River system, Japan, and adult trematodes of were found in the fishes. Molecular and morphological analyses based on 28S rDNA and the ITS1-5.8S-ITS2 region revealed the trematode as '', previously reported in Mainland China and likely introduced to Japan.

View Article and Find Full Text PDF

Industrial expansion and population growth have lowered water quality, polluting aquatic ecosystems world-wide. Metal pollution in the rivers across the United States are a major health concern. The level of metal contamination in fish from the Lower Mississippi River Basin and their threat to public health were last evaluated 20 years ago.

View Article and Find Full Text PDF

Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study established a model of Y. ruckeri-induced intestinal inflammation in channel catfish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!