Proteinase-activated receptor-2 and human lung epithelial cells: disarming by neutrophil serine proteinases.

Am J Respir Cell Mol Biol

Unité de Défense Innée et Inflammation, Unité Associée IP/Inserm 485, Institut Pasteur, Paris, France.

Published: March 2003

Proteinase-activated receptor (PAR)-2 is cleaved within its aminoterminal extracellular domain by serine proteinases such as trypsin, unmasking a new aminoterminus starting with the sequence SLIGKV, which binds intramolecularly and activates the receptor. PAR-2 has been reported to be involved in inflammation within the lungs. We show that PAR-2 is expressed not only by human alveolar (A549), but also by bronchial (16HBE) epithelial cell lines, using RT-PCR and flow cytometry with a PAR-2 antibody whose epitope maps over the trypsin cleavage site. PAR-2 activation by trypsin and by the activating peptide SLIGKV-NH(2) leads to intracellular calcium mobilization in both lung epithelial cells. During lung inflammation, airspaces are burdened by neutrophils that release elastase and cathepsin G, two serine proteinases. We demonstrate that these proteinases do not activate PAR-2, but rather disarm the receptor, preventing activation by trypsin but not by SLIGKV-NH(2). Preincubation of a PAR-2-transfected cell line, as well as 16HBE and A549 cells, with either proteinase led to the disappearance of the cleavage/activation epitope recognized by the PAR-2 antibody. We hypothesize that elastase and cathepsin G disarm PAR-2 by proteolysis of the extracellular domain downstream from the trypsin cleavage/activation site, while leaving unmodified the SLIGKV-NH(2)-binding site. These findings suggest that the neutrophil serine proteinases may play a role in PAR-2-mediated lung inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.4908DOI Listing

Publication Analysis

Top Keywords

serine proteinases
16
lung epithelial
8
epithelial cells
8
neutrophil serine
8
par-2
8
receptor par-2
8
extracellular domain
8
par-2 antibody
8
activation trypsin
8
lung inflammation
8

Similar Publications

CCN1 is a matricellular protein highly expressed in esophageal squamous cell carcinoma (ESCC) but hardly detectable in esophageal adenocarcinoma (EAC). Expression of CCN1 in EAC cells leads to TRAIL-mediated apoptosis. Unlike TRAIL, which primarily triggers cell death, APRIL and BAFF promote cell growth via NFκB signaling.

View Article and Find Full Text PDF

Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.

View Article and Find Full Text PDF

Objectives: Intravenous tenecteplase (TNK) is increasingly used to treat adult patients with acute arterial ischemic stroke, but the risk profile of TNK in childhood stroke is unknown. This study aims to prospectively gather safety data regarding TNK administration in children.

Methods: Since December 2023, a monthly email survey was sent to participants recruited from the International Pediatric Stroke Study and Pediatric Neurocritical Care Research Group querying recent experience with TNK in childhood stroke.

View Article and Find Full Text PDF

Objectives: To investigate the safety and efficacy outcomes of intravenous thrombolysis (IVT) in patients aged >80 years with acute ischaemic stroke (AIS) after IVT was approved in this patient population in several European and non-European countries during 2018-2019.

Design: This is an observational registry study using prospectively collected data from the Safe Implementation of Treatment in Stroke (SITS) registry. Comparisons will be performed between patients treated post-approval (July 2018 to December 2021) period with those treated pre-approval (June 2015 to June 2018) period using propensity score matching (PSM).

View Article and Find Full Text PDF

Loss of tumor cell surface hepatocyte growth factor activator inhibitor-1 predicts worse prognosis in esophageal squamous cell carcinoma.

Pathol Res Pract

January 2025

Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

Hepatocyte growth factor activator inhibitor-1 (HAI-1) is an epithelial type-1 transmembrane protease inhibitor that regulates the pericellular activities of hepatocyte growth factor activator and type-2 transmembrane serine proteases. It is strongly expressed in the stratified squamous epithelium and functions on the cell surface. We previously reported that the cell surface immunoreactivity of HAI-1 was reduced at the invasion front of oral squamous cell carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!