Polymerization and light-induced heat of dental composites cured with LED and halogen technology.

Biomaterials

Institute of Materials Science and Technology, Friedrich-Schiller-University Jena, Löbdergraben 32, D-07743 Jena, Germany.

Published: May 2003

Most commercial light curing units (LCUs) for dental applications use conventional halogen bulbs. Commercial LCUs using light emitting diodes (LEDs) have recently become established on the market, even though some aspects of their performance have not been fully investigated. Temperature rise of dental composites during the light-induced polymerization is considered to be a potential hazard for the pulp of the tooth. This study, therefore, investigated the temperature rise in three different composites (Z100, Durafill, Solitaire2) in two shades (A2, A4) polymerized for 40s with two LED LCUs (Freelight, custom-made LED LCU prototype) and two halogen LCUs (Trilight, Translux). The Trilight was used in the standard and soft-start mode. The temperature rise within the composites were recorded for 60s with a thermocouple and also observed with a high-resolution infrared (HRIR) camera. The factors LCU (p < 0.0001), composite (p < 0.0001) and shade (p = 0.0014) had statistically significant influences on the temperature rise. All composites cured with the halogen LCUs reached at a depth of 2 mm, a statistically significant higher temperature (p < 0.0001) than those cured with the LED LCUs. Only one composite showed a statistically significant lower temperature rise for the halogen LCUs at the 95% confidence level, when the soft-start mode was used instead of the standard mode. In general, the composites with the lighter shade (A2) reached higher temperatures than the darker shade (A4), if the LED LCUs were used. When the halogen LCUs were used, the situation was reversed, the composites with the darker shade (A4) reaching higher temperatures than the lighter shade (A2). This study showed that a HRIR camera represents a powerful tool for the observation of temperature propagation on small samples. This study also showed that LED LCUs represent a viable alternative to halogen LCUs for the light polymerization of dental composites because of a generally lower temperature increase within the composite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(02)00585-9DOI Listing

Publication Analysis

Top Keywords

temperature rise
20
halogen lcus
20
led lcus
16
dental composites
12
lcus
11
composites
8
composites cured
8
cured led
8
lcus light
8
temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!