A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microcapsules with improved mechanical stability for hepatocyte culture. | LitMetric

Microcapsules with improved mechanical stability for hepatocyte culture.

Biomaterials

Johns Hopkins Singapore, Tissue & Therapeutic Engineering Lab, 117597 Singapore.

Published: May 2003

Packed-bed or fluidized-bed bioreactor filled with microencapsulated hepatocytes has been proposed as one of the promising designs for bioartificial liver assist device (BLAD) because of potential advantages of high mass transport rate and optimal microenvironment for hepatocyte culture. Recently, we have developed a microcapsule system for the encapsulation of hepatocytes. The microcapsules consist of an inner core of modified collagen and an outer shell of terpolymer of methyl methacrylate, methacrylate and hydroxyethyl methacrylate. Cells encapsulated in these microcapsules exhibit enhanced cellular functions. Improving the mechanical stability of the microcapsules to withstand the shear stress induced by high perfusion rate would be crucial to the success of BLAD applications. In this study, we investigated the effects of terpolymer molecular weight (M(w)) on the mechanical property of these microcapsules and the differentiated functions of encapsulated hepatocytes. Six terpolymers with different M(w) were synthesized using radical polymerization in solution by adjusting the reaction temperature and the initiator concentration. All the terpolymers formed microcapsules with the methylated collagen. While the terpolymer M(w) had little effect on the capsule membrane thickness and permeability of serum albumin, the mechanical property of the microcapsules was significantly improved by the higher M(w) of the terpolymer. Differentiated functions of the hepatocytes cultured in the microcapsules, including urea synthesis, albumin synthesis and cytochrome P450 metabolic activity, were not significantly affected by the terpolymer M(w).

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(02)00580-xDOI Listing

Publication Analysis

Top Keywords

microcapsules
8
microcapsules improved
8
mechanical stability
8
hepatocyte culture
8
mechanical property
8
property microcapsules
8
differentiated functions
8
terpolymer
5
mechanical
4
improved mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!