Purpose: Axenfeld-Rieger anomaly (ARA) is a form of anterior segment dysgenesis of the eye, mainly caused by mutations in the FOXC1 gene. We had earlier reported a novel mutation in the wing region of FOXC1 in an autosomal dominant family. The present study was aimed to identify the spectrum of mutations in the FOXC1 gene in a cohort of Indian ARA patients from different ethnic backgrounds, and to understand its role in the disease pathogenesis.
Methods: Two new autosomal dominant families and seven sporadic cases of ARA from different ethnic backgrounds were screened for mutations by direct sequencing of the coding region of the FOXC1 gene. Another autosomal dominant ARA family that was previously reported by us was also included for comparative analysis of clinical genetic parameters. The segregation of the mutations in the autosomal dominant families was analyzed by haplotype and restriction analysis. Genotype-phenotype correlation were also undertaken to study the role of FOXC1 in phenotypic manifestation in the patient cohort.
Results: Three of the nine ARA cases harbored mutations in FOXC1, of which two novel nonsense mutations Q2X and Q123X, resulted in haploinsufficiency of the gene product. The missense mutation (M161K) that we previously reported in an autosomal dominant family was also found in another family. Haplotype analysis of these two families suggested multiple founders in the same ethnic group. The mutations resulted in variable expressions of phenotype among the patients as assessed from their prognosis based on visual outcomes.
Conclusions: Significant genetic heterogeneity of FOXC1 was observed in a multi-ethnic population studied in this region of India resulting in variable ARA phenotypes. The different visual outcome seen in the patients suggest a variable expression of FOXC1 and also provide some insight for understanding the gene functions in this population.
Download full-text PDF |
Source |
---|
Am J Kidney Dis
December 2024
Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:
Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.
Study Design: Case series.
Biochem Biophys Res Commun
December 2024
Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnical University, St Petersburg, 195251, Russian Federation. Electronic address:
The expansion of glutamine residue track (polyQ) within soluble proteins (Q proteins) is responsible for nine autosomal-dominant genetic neurodegenerative disorders. These disorders develop when polyQ expansion exceeds a specific pathogenic threshold (Q) which is unique for each disease. However, the pathogenic mechanisms associated with the variability of Q within the family of Q proteins are poorly understood.
View Article and Find Full Text PDFGenet Med
December 2024
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.
Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.
Clin Genet
December 2024
Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.
View Article and Find Full Text PDFCerebellum
December 2024
Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan.
Variants in KIF1A are associated with hereditary spastic paraplegia (SPG30), which can manifest in both pure and complex forms. We describe a Japanese family with a novel KIF1A variant presenting with a complex form of SPG30. Patient 1, a 69-year-old woman, experienced progressive gait disturbance due to spastic paraparesis and cerebellar atrophy, and intellectual disability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!