Adult male mice were exposed to either alternating illumination or constant illumination for 70 days. Light and dark pinealocytes were compared as to distribution within the gland and ultrastructure. Quantitative studies with the electron microscope revealed a significant reduction in pinealocyte size and Golgi complex size in constant light treatment, as well as a marked but nonsignificant reduction in the concentration of lipid droplets and irregular vacuoles. Under constant light treatment the cross-sectional area of pinealocyte pericapillary terminals and the number of granulated vesicles per terminal decreased significantly. A greater number of mitochondria appeared swollen, with rarified matrix and reduced numbers of cristae, with constant light treatment. These results provide ultrastructural correlation with the known reduction of pineal weight, protein synthesis and antigonadotrophic activity that is seen with constant light treatment. The marked decrease in concentration of pinealocyte granulated vesicles in constant light treatment gives morphological support to the theory that these vesicles contain antigonadotrophic secretory material.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.1091840306DOI Listing

Publication Analysis

Top Keywords

constant light
20
light treatment
20
granulated vesicles
8
constant
6
light
6
treatment
5
quantitation ultrastructural
4
ultrastructural changes
4
changes mouse
4
mouse pineal
4

Similar Publications

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

A shikimic acid derived carbon dots (SACNDs-FITC) for multi-modal detection and removal of Hg: Probe design, sensing performance, and applications in food analysis.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.

The first shikimic acid derived fluorescent carbon dots (SACNDs-FITC) for multi-modal detection and simultaneous removal of Hg is revealed. The fluorescence of SACNDs-FITC centered at 520 nm can be selectively quenched by Hg, while the emission centered at 420 nm remains constant which can be used for self-calibration. Naked-eye distinguishable color change from yellow to colourless under daylight and from green to blue under UV light could be observed for SACNDs-FITC in the real-time detection of Hg.

View Article and Find Full Text PDF

Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.

View Article and Find Full Text PDF

Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.

View Article and Find Full Text PDF

Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!