Initial trajectories of dorsal root ganglion (DRG) axons are shaped by chemorepulsive signals from surrounding tissues. Although we have previously shown that axonin-1/SC2 expression on DRG axons is required to mediate a notochord-derived chemorepulsive signal, Dev. Biol. 224, 112-121), other molecules involved in the non-target-derived repulsive signals are largely unknown. Using coculture assays composed of tissues derived from the chick embryo or mutant mice treated with function-blocking antibodies and phosphatidylinositol-specific phospholipase C, we report here that the chemorepellent semaphorin 3A (Sema3A) and its receptor neuropilin-1 are required for mediating the dermamyotome- and notochord-derived, but not the ventral spinal cord-derived, chemorepulsive signal for DRG axons. The dermamyotome-derived chemorepulsion is exclusively dependent on Sema3A/neuropilin-1, whereas other molecules are also involved in the notochord-derived chemorepulsion. Chemorepulsion from the ventral spinal cord does not depend on Sema3A/neuropilin-1 but requires axonin-1/SC2 to repel DRG axons. Thus, differential chemorepulsive signals help shape the initial trajectories of DRG axons and are critical for the proper wiring of the nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0012-1606(02)00087-8DOI Listing

Publication Analysis

Top Keywords

drg axons
20
non-target-derived repulsive
8
repulsive signals
8
dorsal root
8
root ganglion
8
initial trajectories
8
chemorepulsive signals
8
chemorepulsive signal
8
molecules involved
8
ventral spinal
8

Similar Publications

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown.

View Article and Find Full Text PDF

Background: The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells.

Objectives: This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons.

Mol Neurobiol

December 2024

Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.

Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!