The effect of chronic morphine treatment on hippocampal CA1-long-term potentiation (LTP) was examined in vitro. The field excitatory postsynaptic potential (fEPSP) was recorded from stratum radiatum of area CA1 following stimulation of Schaffer collaterals in slices taken from control and morphine-dependent rats. To induce LTP, a 100-Hz primed burst stimulation (PBs) was used. Slices from rats exposed to chronic morphine showed no effect on baseline synaptic responses. Slices from control rats or rats exposed to chronic morphine maintained in ACSF with either morphine or naloxone also had no effect on baseline synaptic responses. Control slices perfused with medium containing either morphine or naloxone as well as both drugs exhibited hippocampal CA1 LTP. Similarly, slices from morphine-dependent rats maintained in ACSF with either naloxone or just morphine free ACSF also exhibited hippocampal CA1 LTP. However, slices from morphine-dependent rats maintained in ACSF with morphine significantly attenuated hippocampal CA1 LTP. These findings suggest that hippocampal CA1-LTP can still be achieved in slices from morphine-dependent rats exhibiting morphine withdrawal through mechanisms that may be inhibited by opiate exposure. Such studies can be helpful in understanding the neurophysiological substrate of memory deficits seen in opiate addicts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(02)04144-6DOI Listing

Publication Analysis

Top Keywords

morphine-dependent rats
16
chronic morphine
12
maintained acsf
12
hippocampal ca1
12
ca1 ltp
12
slices morphine-dependent
12
slices
8
morphine
8
slices control
8
rats exposed
8

Similar Publications

Opioid use disorder is a public health problem that includes symptoms such as withdrawal syndrome and opioid-induced hyperalgesia. Currently, drugs to treat side effects of opioids also have undesirable effects, which lead to limitations. This study investigated the effect of a treatment with cannabidiol in morphine-induced hyperalgesia and withdrawal behavior in morphine-dependent rats.

View Article and Find Full Text PDF

Modulating role of circRNAs and microRNAs in neurobiological changes induced by drug exposure remains unclear. We examined alterations in some circRNAs and microRNAs in the striatum after morphine dependence and withdrawal and their associations with the changes in spatial working memory performance. Male Wistar rats were used in which 10 days morphine exposure induced dependence.

View Article and Find Full Text PDF

Exploring the mechanism of Cinnamomi Cortex against morphine addiction using network pharmacology and molecular docking analyses.

Pak J Pharm Sci

May 2024

Department of Pharmacology of Chinese Medicine, College of Traditional Chinese Medicine, Southern Medical University, Guangzhou Guangdong, China.

Cinnamomi Cortex is a commonly used herb with a variety of pharmacological effects. We investigated the molecular mechanisms by which Cinnamomi Cortex antagonises morphine addiction (MA) using network pharmacology and molecular docking techniques in a morphine-dependent rat withdrawal model. The antagonistic effect of Cinnamomi Cortex was observed by inducing withdrawal symptoms in morphine-dependent rats through a dose-escalation method.

View Article and Find Full Text PDF

Background And Purpose: Previous research has found that the electrical stimulation of the ventral tegmental area (VTA) is involved in drug-dependent behaviors and plays a role in reward-seeking. However, the mechanisms remain unknown, especially the effect of electrical stimulation on this area. Therefore, this study aimed to investigate how the electrical stimulation and the temporary inactivation of VTA affect the morphine- dependent behavior in male rats.

View Article and Find Full Text PDF

Rationale: Transgenerational effects of preconception morphine exposure in female rats have been reported which suggest that epigenetic modifications triggered by female opioid exposure, even when that exposure ends several weeks prior to pregnancy, has significant ramifications for their future offspring.

Objective: The current study compares two mouse strains with well-established genetic variation in their response to mu opioid receptor agonists, C57BL/6J (BL6) and 129S1/svlmJ (129) to determine whether genetic background modifies the impact of preconception opioid exposure.

Methods: Adolescent females from both strains were injected daily with morphine for a total of 10 days using an increasing dosing regimen with controls receiving saline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!