A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of the membrane contact residues and solution structure of the helix F/G loop of prostaglandin I2 synthase. | LitMetric

Determination of the membrane contact residues and solution structure of the helix F/G loop of prostaglandin I2 synthase.

Arch Biochem Biophys

Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030, USA.

Published: March 2003

From our topological arrangement model of prostaglandin I(2) synthase (PGIS) created by homology modeling and topology studies, we hypothesized that the helix F/G loop of PGIS contains a membrane contact region distinct from the N-terminal membrane anchor domain. To provide direct experimental data we have explored the relationship between the endoplasmic reticulum (ER) membrane and the PGIS F/G loop using a constrained synthetic peptide to mimic PGIS residues 208-230 cyclized on both ends through a disulfide bond with added Cys residues. The solution structure and the residues important for membrane contact of the constrained PGIS F/G loop peptide were investigated by high-resolution 1H two-dimensional nuclear magnetic resonance (2D NMR) experiments and a spin label incorporation technique. Through the combination of 2D NMR experiments in the presence of dodecylphosphocholine (DPC) micelles used to mimic the membrane environment, complete 1H NMR assignments of the F/G loop segment have been obtained and the solution structure of the peptide has been determined. The PGIS F/G loop segment shows a defined helix turn helix conformation, which is similar to the three-dimensional crystallography structure of P450BM3 in the corresponding region. The orientation and the residues contacted with the membrane of the PGIS F/G loop were evaluated from the effect of incorporation of a spin-labeled 12-doxylstearate into the DPC micelles with the peptide. Three residues in the peptide corresponding to the PGIS residues L217 (L11), L222 (L16), and V224 (V18) have been demonstrated to contact the DPC micelles, which implies that the residues are involved in contact with the ER membrane in the native membrane-bound PGIS. These results provided the first experimental evidence to localize the membrane contact residues in the F/G loop region of microsomal P450 and are valuable to further define and understand the membrane topology of PGIS and those of other microsomal P450s in the native membrane environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-9861(02)00728-2DOI Listing

Publication Analysis

Top Keywords

f/g loop
32
membrane contact
16
pgis f/g
16
solution structure
12
dpc micelles
12
pgis
10
membrane
10
residues
9
contact residues
8
residues solution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!