The involvement of Cl(-) and several other monovalent anions in photosynthetic oxygen evolution was studied using photosystem II membranes depleted of Cl(-) by dialysis. The results of these studies differ significantly from results obtained using other depletion methods. Binding studies with glycerol as a cryoprotectant confirm our previous observations with sucrose of two interconvertible binding states of photosystem II with similar activities and with slow or fast exchange, respectively, of the bound ion. With glycerol, Cl(-) depletion decreased the oxygen evolution rate to 55% of that with Cl(-) present without decreasing the quantum efficiency of the reaction, supporting our previous conclusion that oxygen evolution can proceed at high rates in the absence of Cl(-). Further, after Cl(-) depletion the S(2) state multiline signal displayed the same periodic appearance with the same signal yield after consecutive laser flashes as with Cl(-) present. Br(-), I(-), and NO(3)(-), although with different capacities to reactivate oxygen evolution, also showed two binding modes. I(-) inhibited when bound in the low-affinity, fast-exchange mode but activated in the high-affinity mode. A comparison of the EPR properties of the S(2) state with these anions suggests that the nature of the ion or the binding mode only has a minor influence on the environment of the manganese. In contrast, F(-) completely inhibited oxygen evolution by preventing the S(2) to S(3) transition and shifted the equilibrium between the g = 4.1 and multiline S(2) forms toward the former, which suggests a considerable perturbation of the manganese cluster. To explain these and earlier observations, we propose that the role of chloride in the water-splitting mechanism is to participate together with charged amino acid side chains in a proton-relay network, which facilitates proton transfer from the manganese cluster to the medium. The structural requirements likely to be involved may explain the sensitivity of oxygen evolution to Cl(-) depletion or other perturbations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi026175y | DOI Listing |
Chem Rev
January 2025
Department of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States.
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northeast Forestry University, Chemical Engineering and Resource Utilization, CHINA.
Electrochemical 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) offers a promising route to transform biomass into value-added chemicals. However, the competing oxygen evolution reaction (OER) greatly limits the HMFOR selectivity. Herein, we report a facile doping strategy to engineer oxygen intermediates adsorption on amorphous NiFe alloys to boost highly selective electrochemical HMF oxidation to produce 2,5-furandicarboxylic acid (FDCA), among which, amorphous Mn-doped NiFeB alloy displays a low HMFOR onset potential of 1.
View Article and Find Full Text PDFAdv Mater
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
The safety of the P2-type layered transition metal oxides (P2-NaTMO), a promising cathode material for sodium-ion batteries (SIBs), is a prerequisite for grid-scale energy storage systems. However, previous thermal runaway studies mainly focused on morphological changes resulting from gas production detection and thermogravimetric analysis, while the structural transition and chemical reactions underlying these processes are still unclear. Herein, a comprehensive methodology to unveil an interplay mechanism among phase structures, interfacial microcrack, and thermal stability of the charged P2-NaNiMnO (NNMO) and the P2-NaNiLiMnO (NNMO-Li) at elevated temperatures is established.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!