Flow Streamlining Devices is a new tool in Coronary Artery Bypass Grafting (CABG). They aim in: a) Performing a sutureless anastomosis to reduce thrombosis at the veno-arterial junction, and b) Providing a hemodynamically efficient scaffolding to reduce secondary flow disturbances. Thrombosis and flow disturbances are factors that have been reported as contributing factors to the development of intimal hyperplasia (IH) and failure of the graft. By reducing thrombosis and flow disturbances, it is expected that IH will be inhibited and the lifetime of the graft extended. To evaluate the hemodynamic benefits of such an implant, two models were designed and fabricated. One simulated the geometry of the conventional anastomosis without an implant, and the other simulated an anastomosis with a flow streamlining implant. Identical flow conditions relevant to a coronary anastomosis were imposed on both models and flow visualization was performed with dye injection and a digital camera. Results showed reduction of disturbances in the presence of the implant. This reduction seems to be favorable to hemodynamic streamlining which may create conditions that may inhibit the initialization of IH. However, the compliance and geometric mismatch between the anastomosis and the implant created a disturbance at the rigid compliant wall interface, which should be eliminated prior to clinical applications.
Download full-text PDF |
Source |
---|
Micromachines (Basel)
November 2024
Department of Microsystem Technology, University of Applied Sciences Berlin, 12459 Berlin, Germany.
Shock wave boundary/layer interactions (SWBLIs) are critical in high-speed aerodynamic flows, particularly within supersonic regimes, where unsteady dynamics can induce structural fatigue and degrade vehicle performance. Conventional measurement techniques, such as pressure-sensitive paint (PSP), face limitations in frequency response, calibration complexity, and intrusive instrumentation. Similarly, MEMS-based sensors, like Kulite sensors, present challenges in terms of intrusiveness, cost, and integration complexity.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Jagiellonian University Medical College, Department of Rheumatology and Immunology, Jakubowskiego 2, 30-688 Kraków, Poland.
: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the abnormal activation of autoreactive T and B cells, autoantibody production, complement activation, and immune-complex deposition, resulting in tissue damage. However, data on immunologic disturbances in SLE, particularly regarding flares, are scarce. : We investigated 35 patients with SLE: 12 (34.
View Article and Find Full Text PDFLife (Basel)
December 2024
Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo-UNIFESP, Diadema 09913-030, Brazil.
Background: Chronic low-grade inflammation in obesity is linked to white adipose tissue (WAT) dysfunction. Plasma lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), triggering NF-κB and worsening these disturbances. Previously, we showed that histone H3 lysine 27 (H3K27) epigenetic modifications affect WAT gene expression in high-fat-diet mice, identifying key pathways in adipose-derived stem cells (ASCs).
View Article and Find Full Text PDFClin Transl Med
January 2025
Division of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Rationale: Coronary artery plaques often develop in regions subjected to disturbed shear stress (DSS), yet the mechanisms underlying this phenomenon remain poorly understood. Our study aimed to elucidate the unknown role of MAPK6 in shear stress and plaque formation.
Methods: In vitro and in vivo experiments, RNA-seq, CO-IP and proteomic analysis, combined with single-cell RNA-seq datasets were used to reveal the upstream and downstream mechanisms involved.
BMC Genomics
January 2025
Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
The current study aimed to detect the mutagenic impacts of aflatoxin B1 (AFB1), which is produced by Aspergillus group fungi, via a high-plant genotoxicity test. Different durations of treatment (3 h, 6 h, and 12 h) were used to treat the Vicia faba root tips with varying concentrations of Aflatoxin B1 (AFB1) following the approved protocol for plant assays published by the International Program on Chemical Safety (IPCS) and the World Health Organization (WHO). The data obtained indicated that AFB1 not only has the ability to induce various alterations in the process of mitosis, ranging from increasing to decreasing mitotic and phase indices but also leads to many mitotic aberrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!