Motor and parietal cortical areas both underlie kinaesthesia.

Brain Res Cogn Brain Res

Laboratoire de Neurobiologie Humaine, Case 362, UMR 6149 'Neurobiologie Intégrative et Adaptative', 52 Faculté St Jérôme, 13397 Cedex 20, Marseille, France.

Published: March 2003

Tendon vibration has long been known to evoke perception of illusory movements through activation of muscle spindle primary endings. Few studies, however, have dealt with the cortical processes resulting in these kinaesthetic illusions. We conceived an fMRI experiment to investigate the cortical structures taking part in these illusory perceptions. Since muscle spindle afferents project onto different cortical areas involved in motor control it was necessary to discriminate between activation related to sensory processes and activation related to perceptual processes. To this end, we designed and compared different conditions. In two illusion conditions, covibration at different frequencies of the tendons of the right wrist flexor and extensor muscle groups evoked perception of slow or fast illusory movements. In a no illusion condition, covibration at the same frequency of the tendons of these antagonist muscle groups did not evoke a sensation of movement. Results showed activation of most cortical areas involved in sensorimotor control in both illusion conditions. However, in most areas, activation tended to be larger when the movement perceived was faster. In the no illusion condition, motor and premotor areas were little or not activated. Specific contrasts showed that perception of an illusory movement was specifically related to activation in the left premotor, sensorimotor, and parietal cortices as well as in bilateral supplementary motor and cingulate motor areas. We conclude that activation in motor as well as in parietal areas is necessary for a kinaesthetic sensation to arise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0926-6410(02)00221-5DOI Listing

Publication Analysis

Top Keywords

cortical areas
12
perception illusory
8
illusory movements
8
muscle spindle
8
areas involved
8
illusion conditions
8
muscle groups
8
illusion condition
8
movement activation
8
areas
7

Similar Publications

The origins of resting-state functional MRI (rsfMRI) signal fluctuations remain debated. Recent evidence shows coupling between global cortical rsfMRI signals and cerebrospinal fluid inflow in the fourth ventricle, increasing during sleep and decreasing with Alzheimer's disease (AD) progression, potentially reflecting brain clearance mechanisms. However, the existence of more complex brain-ventricle coupling modes and their relationship to cognitive decline remains unexplored.

View Article and Find Full Text PDF

Unlabelled: Sensory stimuli vary across a variety of dimensions, like contrast, orientation, or texture. The brain must rely on population representations to disentangle changes in one dimension from changes in another. To understand how the visual system might extract separable stimulus representations, we recorded multiunit neuronal responses to texture images varying along two dimensions: contrast, a property represented as early as the retina, and naturalistic statistical structure, a property that modulates neuronal responses in V2 and V4, but not in V1.

View Article and Find Full Text PDF

Unlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

Olfactory perception can be studied in deep brain regions at high spatial resolutions with functional magnetic resonance imaging (fMRI), but this is complex and expensive. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are limited to cortical responses and lower spatial resolutions but are easier and cheaper to use. Unlike EEG, available fNIRS studies on olfaction are few, limited in scope, and contradictory.

View Article and Find Full Text PDF

Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states.

J Neurosci Methods

January 2025

Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37077 Goettingen, Germany.

Background: Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!