A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of an evaluation routine for left ventricular volumes, ejection fraction and wall motion from gated cardiac FDG PET: a comparison with cardiac magnetic resonance imaging. | LitMetric

The aim of this study was to validate the estimation of left ventricular end-diastolic and end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) as well as wall motion analysis from gated fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in patients with severe coronary artery disease (CAD) using software originally designed for gated single-photon emission tomography (SPET). Thirty patients with severe CAD referred for myocardial viability diagnostics were investigated using a standard FDG PET protocol enhanced with gated acquisition (8 gates per cardiac cycle). EDV, ESV and LVEF were calculated using standard software designed for gated SPET (QGS). Wall motion was analysed using a visual four-point wall motion score on a 17-segment model. As a reference, all patients were also examined within a median of 3 days with cardiovascular cine magnetic resonance imaging (cMRI) (20 gates per cardiac cycle). Furthermore, all gated FDG PET data sets were reoriented in a second run with deliberately misaligned axes to test the quantification procedure for robustness. Correlation between the results of gated FDG PET and cMRI was very high for EDV and ESV ( R=0.96 and R=0.97) and for LVEF ( R=0.95). With gated FDG PET, there was a non-significant tendency to underestimate EDV (174+/-61 ml vs 179+/-59 ml, P=0.21) and to overestimate ESV (124+/-58 ml vs 122+/-60 ml, P=0.65), resulting in underestimated LVEF values (31.5%+/-9.4% vs 34.2%+/-12.4%, P<0.003). The results of reorientations 1 and 2 showed very high correlations (for all R>/=0.99). Segmental wall motion analysis revealed good agreement between gated FDG PET data and cMRI (kappa =0.62+/-0.03). In conclusion, despite small systematic differences which contributed mainly to the lower temporal resolution of gated FDG PET, agreement between gated FDG PET and cMRI was good across a wide range of volumes and LVEF values as well as for wall motion analysis. Therefore, gated FDG PET provides clinically relevant information on function and volumes, using the commercially available software package QGS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-003-1123-3DOI Listing

Publication Analysis

Top Keywords

fdg pet
36
gated fdg
28
wall motion
24
gated
12
edv esv
12
motion analysis
12
fdg
10
pet
10
left ventricular
8
ejection fraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!