Distribution of adenoviral vector in brain after intravenous administration.

J Korean Med Sci

Division of Cardiology, Department of Internal Medicine, School of Medicine, Eulji University, Seoul, Korea.

Published: February 2003

The delivery of transgenes to the central nervous system (CNS) can be a valuable tool to treat CNS diseases. Various systems for the delivery to the CNS have been developed; vascular delivery of viral vectors being most recent. Here, we investigated gene transfer to the CNS by intravenous injection of recombinant adenoviral vectors, containing green fluorescence protein (GFP) as a reporter gene. Expression of GFP was first observed 6 days after the gene transfer, peaked at 14 days, and almost diminished after 28 days. The observed expression of GFP in the CNS was highly localized to hippocampal CA regions of cerebral neocortex, inferior colliculus of midbrain, and granular cell and Purkinje cell layers of cerebellum. It is concluded that intravenous delivery of adenoviral vectors can be used for gene delivery to the CNS, and hence the technique could be beneficial to gene therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3054985PMC
http://dx.doi.org/10.3346/jkms.2003.18.1.108DOI Listing

Publication Analysis

Top Keywords

delivery cns
8
gene transfer
8
adenoviral vectors
8
expression gfp
8
cns
6
delivery
5
gene
5
distribution adenoviral
4
adenoviral vector
4
vector brain
4

Similar Publications

Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies.

CNS Neurosci Ther

December 2024

Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China.

Article Synopsis
  • Spinal cord injury (SCI) is a major neurological disorder causing serious motor, sensory, and autonomic issues, primarily due to poor axon regeneration and remyelination.
  • Recent research highlights new therapeutic strategies that target key molecules and pathways to enhance myelin repair in SCI, using both lab and animal studies.
  • The review emphasizes the challenges in applying these findings to clinical settings, focusing on safety and delivery methods, while positing targeted remyelination therapies as a hopeful treatment approach for SCI.
View Article and Find Full Text PDF

Ovarian cancer remains one of the main causes of human mortality, accounting for millions of deaths every year. Despite of several clinical options such as chemotherapy, photodynamic therapy (PDT), hormonal treatment, radiation therapy, and surgery to manage this disease, the mortality rate is still very high. This alarming statistic highlights the urgent need for innovative approaches to improve both diagnosis and treatment.

View Article and Find Full Text PDF

Brain metastases (BM) are frequently found in cancer patients and, though their precise incidence is difficult to estimate, there is evidence for a correlation between BM and specific primary cancers, such as lung, breast, and skin (melanoma). Among all these, breast cancer is the most frequently diagnosed among women and, in this case, BM cause a critical reduction of the overall survival (OS), especially in triple negative breast cancer (TNBC) patients. The main challenge of BM treatment is the impermeable nature of the blood-brain barrier (BBB), which shields the central nervous systems (CNS) from chemotherapeutic drugs.

View Article and Find Full Text PDF

Administration of AAV-based gene therapies into the intra-cerebrospinal fluid (CSF) compartments via routes such as lumbar puncture (LP) has been implemented as an alternative to intravenous dosing to target the CNS regions. This route enables lower doses, decreases systemic toxicity, and circumvents intravascular pre-existing anti-AAV antibodies. In this study, AAV9-GFP vectors were administered via LP to juvenile cynomolgus macaques with and without pre-existing serum anti-AAV9 antibodies at a 5.

View Article and Find Full Text PDF

Delivering double-stranded RNA (dsRNA) in shrimp is challenging due to the lack of an effective carrier system. This study optimized chitosan nanoparticles (CNs) from two sources-α-chitosan from shrimp and β-chitosan from squid-to encapsulate antiviral dsRNA for oral administration via shrimp feed. Using response surface methodology (RSM), formulations were refined for encapsulation efficiency, particle size, polydispersity index, and zeta potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!