Bicarbonate actions on flagellar and Ca2+ -channel responses: initial events in sperm activation.

Development

Department of Physiology and Biophysics, Box 357290, University of Washington, Seattle, WA 98195-7290, USA.

Published: April 2003

At mating, mammalian sperm are diluted in the male and female reproductive fluids, which brings contact with HCO(3)(-) and initiates several cellular responses. We have identified and studied two of the most rapid of these responses. Stop-motion imaging and flagellar waveform analysis show that for mouse epididymal sperm in vitro, the resting flagellar beat frequency is 2-3 Hz at 22-25 degrees C. Local perfusion with HCO(3)(-) produces a robust, reversible acceleration to 7 Hz or more. At 15 mM the action of HCO(3)(-) begins within 5 seconds and is near-maximal by 30 seconds. The half-times of response are 8.8+/-0.2 seconds at 15 mM HCO(3)(-) and 17.5+/-0.4 seconds at 1 mM HCO(3)(-). Removal of external HCO(3)(-) allows a slow return to basal beat frequency over approximately 10 minutes. Increases in beat symmetry accompany the accelerating action of HCO(3)(-). As in our past work, HCO(3)(-) also facilitates opening of voltagegated Ca(2+) channels, increasing the depolarization-evoked rate of rise of intracellular Ca(2+) concentration by more than fivefold. This action also is detectable at 1 mM HCO(3)(-) and occurs with an apparent halftime of approximately 60 seconds at 15 mM HCO(3)(-). The dual actions of HCO(3)(-) respond similarly to pharmacological intervention. Thus, the phosphodiesterase inhibitor IBMX promotes the actions of HCO(3)(-) on flagellar and channel function, and the protein kinase A inhibitor H89 blocks these actions. In addition, a 30 minute incubation with 60 micro M cAMP acetoxylmethyl ester increases flagellar beat frequency to nearly 7 Hz and increases the evoked rates of rise of intracellular Ca(2+) concentration from 17+/-4 to 41+/-6 nM second(-1). However, treatment with several other analogs of cAMP produces only scant evidence of the expected mimicry or blockade of the actions of HCO(3)(-), perhaps as a consequence of limited permeation. Our findings indicate a requirement for cAMP-mediated protein phosphorylation in the enhancement of flagellar and channel functions that HCO(3)(-) produces during sperm activation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.00353DOI Listing

Publication Analysis

Top Keywords

hco3-
14
beat frequency
12
seconds hco3-
12
actions hco3-
12
sperm activation
8
flagellar beat
8
hco3- produces
8
action hco3-
8
rise intracellular
8
intracellular ca2+
8

Similar Publications

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

The design of efficient advanced oxidation processes (AOPs) in the presence of bicarbonate has long attracted considerable attention in the field of environmental catalysis. In this study, sodium bicarbonate (NaHCO) as one of the most abundant substances in actual water, was introduced to a NaClO/Ru(III) system to enhance the removal of acid orange 7(AO7). NaHCO could significantly improve the removal efficiency of the Ru(III)/NaClO process in HCO at a pH range of 6.

View Article and Find Full Text PDF

Purpose: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is beneficial for uncontrollable torso bleeding; however, prolonged REBOA causes ischemia-reperfusion injury. The purpose of this study is to examine the hypothesis that continuous renal replacement therapy (CRRT) with a cytokine-adsorbing hemofilter would improve mortality due to hemorrhagic shock with REBOA-reperfusion injury by controlling metabolic acidosis, hyperkalemia, and hypercytokinemia.

Methods: Hemorrhagic shock with 40% blood loss was induced by phlebotomy in eight female swine.

View Article and Find Full Text PDF

The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!