A series of three homologous dimethyldiamides Ac-(Z)-deltaPhe-NMe2, Ac-L-Phe-NMe2 and Ac-DL-Phe-NMe2 have been synthesized and their structures determined from single-crystal X-ray diffraction data. To learn more about the conformational preferences of the compounds studied, the fully relaxed phi, psi conformational energy maps on the free molecules of Ac-deltaAla-NMe2 and Ac-(Z)-deltaPhe-NMe2 were obtained with the HF/3-21G method and the calculated minima re-optimized with the DFT/B3LYP/6-31G** method. The crystal state results have been compared with the literature data. The studied dimethyldiamide Ac-deltaXaa-NMe2 combines the double bond in positions alpha, beta and the C-terminal tertiary amide within one molecule. As the representative probe with deltaXaa = deltaAla, (Z)-deltaLeu and (Z)-deltaPhe shows, in the solid state they adopt the conservative conformation with phi, psi approximately -45 degrees, approximately 130 degrees and with a non-planar tertiary amide bond, whatever the packing forces are. This conformation is located on the Ramachandran map in region H/F, which is of high-energy for common amino acids, but not so readily accessible to them. The free molecule calculations on Ac-deltaAla-NMe2 and Ac-(Z)-deltaPhe-NMe2 reveal that, in spite of dissimilar overall conformational profiles of these molecules, this structure is one of their low-energy conformers and for Ac-(Z)-deltaPhe-NMe2 it constitutes the global minimum. So, the theoretical results corroborate those experimental results proving that this structure is robust enough to avoid conformational distortion due to packing forces. In contrast to Ac-deltaXaa-NMe2, the saturated Ac-L/DL-Xaa-NMe2 shows the constancy of the associative patterns but do not prefer any molecular structure in the solid state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.433 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!