Sodium-hydrogen exchanger regulatory factor isoform-1 (NHERF-1) and NHERF-2 are two structurally related PDZ-domain-containing protein adapters that effectively transduce cyclic AMP (cAMP) signals that inhibit NHE3, the sodium-hydrogen exchanger isoform present at the apical surface of kidney and gut epithelia. The mouse renal proximal tubule expresses both NHERF isoforms, suggesting their redundant functions as regulators of renal electrolyte metabolism. To define the role of NHERF-1 in the physiological control of NHE3, we analyzed NHE3 activity in isolated brush border membrane (BBM) preparations from renal proximal tubules of wild-type (WT) and NHERF-1 (-/-) mice. Basal Na(+)-H(+) exchange was indistinguishable in BBMs from WT and NHERF-1 (-/-) mice (0.96+/-0.08 and 0.95+/-0.10 nmol/mg protein/10 s, respectively). Activation of membrane bound cAMP-dependent protein kinase (PKA) by cAMP inhibited NHE3 activity in WT BBMs (0.55+/-0.07 nmol/mg protein/10 s or 40+/-9%, P<0.01) but had no discernible effect on Na(+)-H(+) exchange in the NHERF-1 (-/-) BBM (0.97+/-0.07 nmol/mg protein/10 s; P=not significant). This was associated with a significant decrease in cAMP-stimulated phosphorylation of NHE3 immunoprecipitated from solubilized NHERF-1 (-/-) BBMs. As the protein levels for NHE3, NHERF-2, PKA and ezrin were not changed in the NHERF-1 (-/-) BBMs, the data suggest a unique role for NHERF-1 in cAMP-mediated inhibition of NHE3 activity in the renal proximal tubule of the mouse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(03)00043-7 | DOI Listing |
Inflammopharmacology
January 2025
Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University of British Columbia, Vancouver, BC, Canada.
NF1 encodes the multifunctional tumour suppressor protein, neurofibromin, which is best known for its causative role in Neurofibromatosis type 1 and in regulating MAPK signaling. Neurofibromin, in a context-specific manner, is involved in various tumorigenic processes, including those in melanocytes. This study investigated whether NF1 loss can collaborate with oncogenic GNAQ to promote melanoma in the dermis or eyes, where the G alpha q pathway is almost always activated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!