Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors.

Eur J Pharmacol

Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires) (INGEBI (CONICET-UBA)), Capital Federal (1428), Buenos Aires, Argentina.

Published: February 2003

The modulation of ionotropic gamma-aminobutyric acid (GABA) receptors (GABA-gated Cl(-) channels) by a group of natural and synthetic flavonoids was studied in electrophysiological experiments. Quercetin, apigenin, morine, chrysin and flavone inhibited ionic currents mediated by alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors expressed in Xenopus laevis oocytes in the micromolar range. alpha(1)beta(1)gamma(2s) GABA(A) and rho(1) GABA(C) receptors differ largely in their sensitivity to benzodiazepines, but they were similarly modulated by different flavonoids. Quercetin produced comparable actions on currents mediated by alpha(4)beta(2) neuronal nicotinic acetylcholine, serotonin 5-HT(3A) and glutamate AMPA/kainate receptors. Sedative and anxiolytic flavonoids, like chrysin or apigenin, failed to potentiate but antagonized alpha(1)beta(1)gamma(2s) GABA(A) receptors. Effects of apigenin and quercetin on alpha(1)beta(1)gamma(2s) GABA(A) receptors were insensitive to the benzodiazepine antagonist flumazenil. Results indicate that mechanism/s underlying the modulation of ionotropic GABA receptors by some flavonoids differs from that described for classic benzodiazepine modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-2999(03)01309-8DOI Listing

Publication Analysis

Top Keywords

alpha1beta1gamma2s gabaa
16
currents mediated
12
gabac receptors
12
ionic currents
8
receptors
8
modulation ionotropic
8
gaba receptors
8
gabaa rho1
8
rho1 gabac
8
gabaa receptors
8

Similar Publications

Fast inhibitory neurotransmission in the mammalian nervous system is largely mediated by GABA receptors, chloride-selective members of the superfamily of pentameric Cys-loop receptors. Native GABA receptors are heteromeric assemblies sensitive to many important drugs, from sedatives to anesthetics and anticonvulsant agents, with mutant forms of GABA receptors implicated in multiple neurological diseases. Despite the profound importance of heteromeric GABA receptors in neuroscience and medicine, they have proven recalcitrant to structure determination.

View Article and Find Full Text PDF

Aminoquinoline derivatives were evaluated against a panel of receptors/channels/transporters in radioligand binding experiments. One of these derivatives (DCUK-OEt) displayed micromolar affinity for brain γ-aminobutyric acid type A (GABA) receptors. DCUK-OEt was shown to be a positive allosteric modulator (PAM) of GABA currents with α1β2γ2, α1β3γ2, α5β3γ2 and α1β3δ GABA receptors, while having no significant PAM effect on αβ receptors or α1β1γ2, α1β2γ1, α4β3γ2 or α4β3δ receptors.

View Article and Find Full Text PDF

Analysis of β-Subunit-dependent GABAA Receptor Modulation and Behavioral Effects of Valerenic Acid Derivatives.

J Pharmacol Exp Ther

June 2016

Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria (S.K., J.H., D.L., S.H.); Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria (M.H., G.P., M.D.M.); and Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria (C.S.).

Valerenic acid (VA)-a β2/3-selective GABA type A (GABAA) receptor modulator-displays anxiolytic and anticonvulsive effects in mice devoid of sedation, making VA an interesting drug candidate. Here we analyzed β-subunit-dependent enhancement of GABA-induced chloride currents (IGABA) by a library of VA derivatives and studied their effects on pentylenetetrazole (PTZ)-induced seizure threshold and locomotion. Compound-induced IGABA enhancement was determined in oocytes expressing α1β1γ2S, α1β2γ2S, or α1β3γ2S receptors.

View Article and Find Full Text PDF

Assessment of direct gating and allosteric modulatory effects of meprobamate in recombinant GABA(A) receptors.

Eur J Pharmacol

March 2016

Department of Physiology and Pharmacology and Center for Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA; Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. Electronic address:

Meprobamate is a schedule IV anxiolytic and the primary metabolite of the muscle relaxant carisoprodol. Meprobamate modulates GABAA (γ-aminobutyric acid Type A) receptors, and has barbiturate-like activity. To gain insight into its actions, we have conducted a series of studies using recombinant GABAA receptors.

View Article and Find Full Text PDF

We present the synthesis of new derivatives of natural products magnolol (1) and honokiol (2) and their evaluation as allosteric ligands for modulation of GABAA receptor activity. New derivatives were prepared via metal assisted cross-coupling reactions in two consecutive steps. Compounds were tested by means of two-electrode voltage clamp electrophysiology at the α1β2γ2 receptor subtype at low GABA concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!