Copper binding properties were investigated for several popular zwitterionic buffers. The two buffers 4-morpholinoethanesulfonic acid (MES) and 3-N-morpholinopropanesulfonic acid (MOPS) did not bind copper and would be good choices for metal speciation studies within their operational pH range. Conversely, 3-(N-morpholino)-2-hydroxypropanesulfonic acid (MOPSO) was observed to weakly bind copper directly (log Kc 2.02). Moreover, strong copper binding was observed for 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)piperazine-1-propanesulfonic acid (HEPPS), and N-(2-hydroxyethyl)piperazine-N'-(2-hydroxypropanesulfonic acid) (HEPPSO). Log Kc values range from 7.04 to 7.68 and are indicative of strong copper binding ligands. The latter buffer also exhibited weak binding characteristics with a log Kc of 2.05. The strong Cu binding ligands were present in HEPES, HEPPS, and HEPPSO at much lower concentrations than the total buffer concentration. MES, HEPES, MOPSO, and HEPPSO were analyzed by electrospray-ionization quadrapole time-of-flight mass spectroscopy. The most prominent feature of the spectra for each buffer analyzed was the presence of multiple oligomers, indicating a propensity of interaction between buffer molecules. In addition, the presence of several contaminants was identified in the mass spectrum of the HEPES matrix, including a prominent contaminant (at m/z 131) present in levels similar to those obtained from the modeling of the copper titration data. Other contaminants were found in the other matrixes but were not identified as possible copper binding agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac0261101 | DOI Listing |
Free Radic Biol Med
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China. Electronic address:
The emergence of cuproptosis, a novel form of regulated cell death, is induced by an excess of copper ions and has been associated with the progression of multiple diseases, including liver injury, cardiovascular disease, and neurodegenerative disorders. However, there are currently no inhibitors available for targeting specific cuproptosis-related pathways in therapy. Here, the compound merestinib (MTB) has been identified as a strong inhibitor of cuproptosis through screening of a kinase inhibitor library.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Material Science and Engineering, Nanjing Tech University P. R China.
Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Furman University, Greenville, South Carolina 29613, United States.
Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
This work reports the synthesis of a copper metal complex with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, and 2,2'-dipyridylamine employing microwave-assisted synthesis (MWAS). To the best of authors knowledge, this is the first study reporting a NSAID-based complex achieved through MWAS. The coordination compound was characterised by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, and ultraviolet-visible spectrophotometry.
View Article and Find Full Text PDFQRB Discov
December 2024
Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!