In the recent years, it has repeatedly been stated that amines react with CO2 and can therefore not be chromatographed under supercritical conditions with CO2. The aim of the present work is to elucidate the structural requirements and conditions that can lead to the reaction of an amine analyte with CO2 and, if this occurs, the structure of the formed product. The use of on-line nuclear magnetic resonance (NMR) spectroscopy with a flow probe for supercritical fluid chromatography (SFC) enables the investigation of these unstable analytes in supercritical mediums. Several alkyl-substituted secondary benzylamines and some primary aromatic amines were dissolved in supercritical CO2 and investigated by employing on-line SFC-1H NMR spectroscopy. It was found that the condition of carbamic acid formation depends on the steric properties of the substituents of the amine. A 2-isopropylamino alcohol compound, metoprolol, was also investigated with the setup. No carbamic acid could be detected with the present conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac020527pDOI Listing

Publication Analysis

Top Keywords

nuclear magnetic
8
magnetic resonance
8
supercritical fluid
8
fluid chromatography
8
nmr spectroscopy
8
carbamic acid
8
supercritical
6
reaction monitoring
4
monitoring aliphatic
4
aliphatic amines
4

Similar Publications

Purpose: Local recurrence of prostate cancer (PCa) after radiation therapy (RT) typically occurs at the site of dominant tumor burden, and recent evidence confirms that magnetic resonance imaging (MRI) guided tumor dose escalation improves outcomes. With the emergence of prostate-specific membrane antigen (PSMA) positron emission tomography (PET), we hypothesize that PSMA-PET and MRI may not equally depict the region most at risk of recurrence after RT.

Methods And Materials: Patients with intermediate- to high-risk PCa and MRI plus PSMA-PET performed before RT were identified.

View Article and Find Full Text PDF

Understanding lipid digestion is crucial for promoting human health. Traditional methods for studying lipolysis face challenges in sample representativeness and pre-treatment, and cannot measure real-time lipolysis in vivo. Thus, non-invasive techniques like magnetic resonance imaging (MRI) need to be developed.

View Article and Find Full Text PDF

Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques.

Carbohydr Res

January 2025

Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil. Electronic address:

Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells.

View Article and Find Full Text PDF

Exploring redox-active electrolytes to boost energy density of carbon-based supercapacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China. Electronic address:

To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous HSO electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ.

View Article and Find Full Text PDF

Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!