A novel stereoselective one-pot conversion of alcohols into alkyl halides mediated by N,N'-diisopropylcarbodiimide.

Chem Commun (Camb)

Combinatorial Centre of Excellence, Chemistry Department, University of Southampton, Southampton S017 1BJ, UK.

Published: January 2003

Alcohols can be converted in high yields to the corresponding alkyl halides in a one-pot procedure via the corresponding O-alkylisourea; very short reaction times are possible when microwave irradiation is used.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b211424kDOI Listing

Publication Analysis

Top Keywords

alkyl halides
8
novel stereoselective
4
stereoselective one-pot
4
one-pot conversion
4
conversion alcohols
4
alcohols alkyl
4
halides mediated
4
mediated nn'-diisopropylcarbodiimide
4
nn'-diisopropylcarbodiimide alcohols
4
alcohols converted
4

Similar Publications

CFH-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines.

Nat Commun

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.

View Article and Find Full Text PDF

A Convenient and Highly Efficient Strategy for Esterification of Poly (γ-Glutamic Acid) with Alkyl Halides at Room Temperature.

Polymers (Basel)

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China.

The presented work discusses the highly efficient esterification of poly (γ-glutamic acid) (γ-PGA) with alkyl halides at room temperature. The esterification reaction was completed within 3 h, and the prepared γ-PGA esters were obtained with excellent yields (98.6%) when 1,1,3,3-tetramethylguanidine (TMG) was used as a promoter.

View Article and Find Full Text PDF

Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.

View Article and Find Full Text PDF

Benzothiazolium salts as versatile primary alcohol derivatives in Ni-catalyzed cross-electrophile arylation/vinylation.

Org Biomol Chem

January 2025

Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.

Herein, we report a Ni-catalyzed cross-electrophile coupling of aryl/vinyl halides with benzothiazolium salts derived from alcohols. Our findings demonstrate that primary alkyl benzothiazolium salts serve as effective C(sp)-O substrates, facilitating coupling with aryl and vinyl halides. This method not only enables the formal functionalization of primary alcohols but also provides experimental support for previously established sequential alcohol halogenation and Ni-catalyzed reductive coupling platforms.

View Article and Find Full Text PDF

Atomistic dynamics of elimination and substitution driven by entrance channel.

J Chem Phys

January 2025

Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China.

E2 elimination and SN2 substitution reactions are of central importance in preparative organic synthesis due to their stereospecificity. Herein, atomistic dynamics of a prototype reaction of ethyl chloride with hydroxide ion are uncovered that show strikingly distinct features from the case with fluoride anion. Chemical dynamics simulations reproduce the experimental reaction rate and reveal that the E2 proceeding through a direct elimination mechanism dominates over SN2 for the hydroxide ion reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!