Inspired by the observation of polar interactions between CO and O(2) ligands and the peptide residues at the active site of hemoglobin and myoglobin, we synthesized two kinds of superstructured porphyrins: TCP-IM, which contains a linked imidazole ligand, and TCP-PY, which contains a linked pyridine ligand, and examined the thermodynamic, kinetic, and spectroscopic (UV/Vis, IR, NMR, and resonance Raman) properties of their CO and O(2) complexes. On both sides of each porphyrin plane, bulky binaphthyl bridges form hydrophobic cavities that are suitable for the binding of small molecules. In the proximal site, an imidazole or pyridine residue is covalently fixed and coordinates axially to the central iron atom. In the distal site, two naphtholic hydroxyl groups overhang toward the center above the heme. The CO affinities of TCPs are significantly lower than those of other heme models. In contrast, TCPs have moderate O(2) binding ability. Compared with reported model hemes, the binding selectivity of O(2) over CO in TCP-IM and TCP-PY complexes is greatly improved. The high O(2) selectivity of the TCPs is mainly attributable to a low CO affinity. The comparison of k(on)(CO) values of TCPs with those of unhindered hemes indicates the absence of steric hindrance to the intrinsically linear CO coordination to Fe(II) in TCP-IM and TCP-PY. The abnormally large k(off)(CO) values are responsible for the low CO affinities. In contrast, k(off)(O(2)) of TCP-PY is smaller than those of other pyridine-coordinated model hemes. For the CO adducts of TCPs, unusually low nu(Fe-CO) and unusually high nu(C-O) frequencies are observed. These results can be ascribed to decreased back-bonding from the iron atom to the bound CO. The lone pairs of the oxygen atoms of the hydroxyl groups prevent back-bonding by exertion of a strong negative electrostatic interaction. On the other hand, high nu(Fe-O(2)) frequencies are observed for the O(2) adducts of TCPs. In the resonance Raman (RR) spectrum of oxy-TCP-IM, we observed simultaneous enhancement of the Fe-O(2) and O-O stretching modes. Furthermore, direct evidence for hydrogen bonding between the hydroxyl groups and bound dioxygen was obtained by RR and IR spectroscopy. These spectroscopic data strongly suggest that O(2) and CO binding to TCPs is controlled mainly by the two different electrostatic effects exerted by the overhanging OH groups: destabilization of CO binding by decreasing back-bonding and stabilization of O(2) binding by hydrogen bonding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200390096 | DOI Listing |
Braz J Biol
January 2025
Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Mulyorejo, Surabaya, Indonesia.
Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.
Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA.
Vinylic phenylsulfones containing a β-hydroxyl stereocenter undergo a diastereoselective isomerization to the corresponding allylic isomer upon treatment with 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China.
RuO-based materials are considered an important kind of electrocatalysts on oxygen evolution reaction and water electrolysis, but the reported discrepancies of activities exist among RuO electrocatalysts prepared via different processes. Herein, a highly efficient RuO catalysts via a facile hydrolysis-annealing approach is reported for water electrolysis. The RuO catalyst dealt with at 200 °C (RuO-200) performs the highest activities on both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid with overpotentials of 200 mV for OER and 66 mV for HER to reach a current density of 100 mA cm as well as stable operation for100 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!