Mutant hepatitis B viruses are useful tools to study the viral life cycle and viral pathogenesis. Furthermore, recombinant hepatitis B viruses are candidate vectors for liver-directed gene therapy. Because wild-type viruses present in recombinant or mutant virus stocks may falsify experimental results and are detrimental for a viral vector, we investigated whether and to what extent wild-type virus is present in recombinant virus stocks and where it originates from. We took advantage of the duck model of hepatitis B virus infection which allows very sensitive detection of replication-competent viruses by infection of primary duck hepatocytes or of ducklings in vivo. Recombinant hepatitis B virus stocks contained significant amounts of wild-type viruses, which were most probably generated by homologous recombination between plasmids containing homologous viral sequences. In addition, replication-competent viral genomes were reconstituted from plasmids which contained replication-deficient but redundant viral sequences. Using a stable cell line for packaging of deficient viral genomes, no wild-type virus was detected, neither by infection of primary hepatocytes nor in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149740PMC
http://dx.doi.org/10.1128/jvi.77.5.2873-2881.2003DOI Listing

Publication Analysis

Top Keywords

virus stocks
12
virus recombinant
8
hepatitis viruses
8
recombinant hepatitis
8
wild-type viruses
8
wild-type virus
8
hepatitis virus
8
infection primary
8
viral sequences
8
viral genomes
8

Similar Publications

The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics.

View Article and Find Full Text PDF

Fewer than 10 % of children with diffuse midline glioma (DMG) survive 2 years from diagnosis. Radiation therapy remains the cornerstone of treatment and there are no medicinal products with regulatory approval. Although the biology of DMG is better characterized, this has not yet translated into effective treatments.

View Article and Find Full Text PDF

Structure-guided engineering of a mutation-tolerant inhibitor peptide against variable SARS-CoV-2 spikes.

Proc Natl Acad Sci U S A

January 2025

Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).

View Article and Find Full Text PDF

Background And Aim: Bulevirtide (BLV) leads to beneficial virologic and biochemical responses when given alone to treat hepatitis delta virus (HDV) infection, which causes the most severe form of chronic viral hepatitis. We evaluated 48 weeks of BLV monotherapy, BLV + tenofovir disoproxil fumarate (TDF) and BLV + pegylated interferon alfa-2a (Peg-IFNα-2a), with 24-week follow-up.

Methods: Ninety patients were enrolled into six arms of 15 each (A-F); 60 patients were included in the main randomisation (arms A-D), and 30 patients (arms E-F) were randomised to the extension phase: (A) Peg-IFNα-2a 180 μg once weekly (QW); (B) BLV 2 mg once daily (QD) + Peg-IFNα-2a 180 μg QW; (C) BLV 5 mg QD + Peg-IFNα-2a 180 μg QW; (D) BLV 2 mg QD; (E) BLV 10 mg QD + Peg-IFNα-2a 180 μg QW and (F) BLV 10 mg (5 mg twice daily) + TDF QD.

View Article and Find Full Text PDF

Background: Diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infections can be accomplished using various sample types and testing methods.  The objective of this study was to evaluate the feasibility of using air emission samples to detect the onset of PRRSV type 2 infections in growing pigs.

Methods: Air emissions and oral fluid samples were collected from three grow-finish barns, stocked with PRRSV-negative pigs every 2 weeks for 14-20 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!