Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study describes the localization and distribution of putative ecto-nucleoside-triphosphate-diphosphohydrolases in the frog semicircular canals. These enzymes provide the terminating mechanism of adenosine-5'-triphosphate (ATP) signalling. The localization of the ATP hydrolysis was mapped ultracytochemically using a one-step cerium citrate reaction. Electron-dense precipitates, indicating ecto-adenosine-triphosphatase (ecto-ATPase) activity, were found at the outer surface of plasma membranes of crista hair cells and supporting cells of the sensory epithelium, transitional cells and undifferentiated cells of the ampullar wall and dark cells constituting the secretory epithelium. Non-sensory cells of the ampulla usually exhibited reaction deposits at the level of both apical and basolateral membranes coming into contact with the endolymph and the perilymph respectively, while cells constituting the sensory epithelium showed evident differences in relation to their position. Hair cells and supporting cells of the peripheral regions exhibited clear reaction products both at the level of apical and basolateral membranes, while those of the isthmus region showed abundant reactivity only at the level of their apical membranes. Of particular interest was the observation that hair cell stereocilia exhibited an abundant ecto-ATPase activity, thus suggesting a possible colocalization of enzymatic sites with purinergic receptors and mechanotransduction channels. This strategic expression of ecto-ATPase sites could provide a rapid mechanism of ATP removal able to rapidly restore the sensitivity of transduction channels. In conclusion, the widespread distribution of ecto-ATPase sites at the level of sensory and non-sensory cells of the frog semicircular canals suggests that ATP may have a key role in controlling vestibular function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(02)00583-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!