Rice ( Oryza sativa) cultivar development currently faces the task of overcoming yield plateaus, which is difficult due to the narrow genetic base of breeding programs. Oryza glumaepatula is a diploid wild relative of cultivated rice, native to Central and South America, and is therefore a potential source of alleles of agronomic importance to rice breeding programs. We studied 11 agronomic traits in BC(2)F(2) families of the interspecific cross Oryza sativa x O. glumaepatula. Transgressive lines which are almost isogenic to the elite recurrent O. sativa parent were identified for most of these traits. Quantitative trait locus (QTL) analysis was performed by single-point and interval mapping using a molecular map based on 157 microsatellite and STS markers. Marker regions accounting for 14.5 to 72.9% of a phenotypic variation trait were identified in 9 of the 12 rice chromosomes. Positive QTL effects from O. glumaepatula were observed in chromosomal regions associated with tillering and panicle-number traits.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-002-0869-5DOI Listing

Publication Analysis

Top Keywords

oryza sativa
12
oryza glumaepatula
8
cultivated rice
8
rice oryza
8
breeding programs
8
oryza
5
rice
5
qtl mapping
4
mapping introgression
4
introgression yield-related
4

Similar Publications

Phthalates are synthetic compounds, well-known plasticizers, with numerous applications and reported to have adverse effects on all living organisms residing in terrestrial and aquatic environments. In this study, the rice (Oryza sativa) seedlings were exposed to di-butyl phthalate (DBP) exogenously for 7 days, with varying concentrations of 0, 200, 400, 800, and 1600 mg/L, to explore the toxicological, physiological, and biochemical consequences by measuring various parameters such as pigment, lipid, and HO (hydrogen peroxide) contents. The biochemical analysis of seedlings showed that the pigments, lipids, and HO concentrations were altered abnormally.

View Article and Find Full Text PDF

The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus.

View Article and Find Full Text PDF

Environmental impact analysis of crop residue burning in Madhya Pradesh: A multivariate comparison across key crops.

Environ Monit Assess

January 2025

Department of Agricultural Economics, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, Kerala, India.

This study quantified the environmental impacts of residue burning of major produced and burned crops in Madhya Pradesh, central India. The environmental impacts were quantified using Life Cycle Assessment (LCA) coupled with Monte Carlo simulation of 1000 iterations. Crop wise marginal impacts of the crops have been quantified using Multivariate regression model.

View Article and Find Full Text PDF

Mitigating cadmium stress in rice (Oryza sativa L.) using succinic and oxalic acids with focus on cellular integrity and antioxidant responses.

Plant Physiol Biochem

January 2025

Department of Environmental Sciences, Government College University Allama Iqbal Road, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan. Electronic address:

Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as succinic acid (SA) and oxalic acid (OA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a pot experiment to assess the impact of SA (0.

View Article and Find Full Text PDF

The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!