A limited number of constitutive promoters have been used to direct transgene expression in plants and they are often derived from non-plant sources. Here, we describe novel gene-regulatory elements which are associated with a cryptic constitutive promoter from tobacco, tCUP, and modifications that were made to create a strong gene-expression system that is effective across all living cell types from a wide range of plant species, including several important crops ( Arabidopsis, canola, flax, alfalfa, tobacco). The tCUP 5' untranslated region was mutated to eliminate translational interference by upstream ATGs, and the influence of the Kozak consensus sequence on the levels of a beta-glucuronidase (GUS) reporter gene activity was demonstrated. These modifications resulted in expression that was greatly enhanced in all organs. A TATA consensus sequence was added to the core promoter to complement an existing Initiator (Inr) sequence. Although this addition was known to elevate core promoter activity by 3-fold the additive effect on the overall gene-expression system was marginal in all of the transgenic plants tested. Two transcriptional enhancers were identified and the region containing them were oligomerized, yielding a significant increase in marker gene-expression in some but not all plant species. In general, the enhanced tCUP gene-expression system generated levels of GUS activity which exceeded that of the 35S promoter in most plant species and the elevation in activity occurred uniformly among the various plant organs. The potential benefit of cryptic elements for the construction of gene-expression systems for crop species is discussed
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-002-0926-0 | DOI Listing |
BMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFCommun Biol
January 2025
Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, USA.
The Bartonella genus of bacteria encompasses ubiquitous species, some of which are pathogenic in humans and animals. Bartonella henselae, the causative agent of Cat Scratch disease, is responsible for a large portion of human Bartonella infections. These bacteria can grow outside of cells, replicate in erythrocytes and invade endothelial and monocytic cells.
View Article and Find Full Text PDFSci Rep
January 2025
USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA.
Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 6 (L6) and susceptible Line 7 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, China.
Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!