Polyamides are a class of heterocyclic small molecules with the potential of controlling gene expression by binding to the minor groove of DNA in a sequence-specific manner. To evaluate the feasibility of this class of compounds as antiviral therapeutics, molecules were designed to essential sequence elements occurring numerous times in the HPV genome. This sequence element is bound by a virus-encoded transcription and replication factor E2, which binds to a 12 bp recognition site as a homodimeric protein. Here, we take advantage of polyamide:DNA and E2:DNA co-crystal structural information and advances in polyamide synthetic chemistry to design tandem hairpin polyamides that are capable of displacing the major groove-binding E2 homodimer from its DNA binding site. The binding of tandem hairpin polyamides and the E2 DNA binding protein to the DNA site is mutually exclusive even though the two ligands occupy opposite faces of the DNA double helix. We show with circular permutation studies that the tandem hairpin polyamide prevents the intrinsic bending of the E2 DNA site important for binding of the protein. Taken together, these results illustrate the feasibility of inhibiting the binding of homodimeric, major groove-binding transcription factors by altering the local DNA geometry using minor groove-binding tandem hairpin polyamides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150225 | PMC |
http://dx.doi.org/10.1093/nar/gkg206 | DOI Listing |
Anal Chim Acta
February 2025
School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China. Electronic address:
Background: DNA methylation catalyzed by various DNA methyltransferases (DNA MTases) is one of the important epigenetic regulations in both eukaryotes and prokaryotes. Therefore, the detection of DNA MTase activity is a vital target and direction in the study of methylation-related diseases.
Results: In this study, an ultrasensitive and robust strategy was developed for DNA MTase activity sensing based on bifunctional probe propelling multipath strand displacement amplification and CRISPR/Cas12a techniques.
Biosens Bioelectron
March 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China. Electronic address:
Anal Chem
November 2024
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
The long noncoding RNA (lncRNA) HOTAIR has been shown to act as an oncogene in a variety of cancers, including hepatocellular carcinoma (HCC). MicroRNA-122 (miR-122) is a key liver-specific miRNA that is frequently inhibited in HCC and is associated with poor prognosis. However, a potential relationship between HOTAIR and miR-122 in individual hepatocytes has not been explored.
View Article and Find Full Text PDFBiochemistry
November 2024
Ridgeview Instruments AB, Uppsala SE 752 37, Sweden.
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs.
View Article and Find Full Text PDFNucleic Acids Res
October 2024
Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
Small molecules can inhibit cellular processes such as replication and transcription by binding to the promoter regions that are prone to form G-quadruplexes. However, since G-quadruplexes exist throughout the human genome, the G-quadruplex binders suffer from specificity issues. To tackle this problem, a G-quadruplex binder (Pyridostatin, or PDS) is conjugated with a ligand (Polyamide, or PA) that can specifically recognize DNA sequences flanking the G-quadruplex forming region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!