Decorin binds fibrinogen in a Zn2+-dependent interaction.

J Biol Chem

Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas Medical Center, Houston 77030, USA.

Published: April 2003

We have previously shown that decorin, a member of the small leucine-rich proteoglycan family of extracellular matrix proteoglycans/glycoproteins is a Zn(2+) metalloprotein at physiological Zn(2+) concentrations (Yang, V. W-C., LaBrenz, S. R., Rosenberg, L. C., McQuillan, D., and Höök, M. (1999) J. Biol. Chem. 274, 12454-12460). We now report that the decorin proteoglycan binds fibrinogen in the presence of Zn(2+). The fibrinogen-binding site is located in the N-terminal domain of the decorin core protein and a 45-amino acid peptide representing this domain binds to the fibrinogen D fragment with an apparent K(D) of 1.7 x 10(-6) m, as determined from fluorescence polarization data. Furthermore, we show that Zn(2+) promotes the self-association of decorin. The N-terminal domain of the core protein also mediates this activity. The results of solid-phase binding assays and gel filtration chromatography suggest that the N-terminal domain of decorin, when present at low micromolar concentrations, forms an oligomer in a Zn(2+)-dependent manner. Thus, Zn(2+) appears to play a pivotal role in the interactions and biological function of decorin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M300171200DOI Listing

Publication Analysis

Top Keywords

binds fibrinogen
12
n-terminal domain
12
domain decorin
8
core protein
8
decorin
7
zn2+
5
decorin binds
4
fibrinogen zn2+-dependent
4
zn2+-dependent interaction
4
interaction decorin
4

Similar Publications

A medical predicament has led to extensive drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), and the complexity of treatment has increased exponentially with the induction of osteomyelitis. In view of the severe situation and the potential of bacterial antivirulence strategies, this study focused on the key virulence factor caseinolytic protease (ClpP) of S. aureus to identify new strategies against MRSA-induced osteomyelitis.

View Article and Find Full Text PDF

Inoculation of Bothrops jararaca snake venom (BjV) induces thrombocytopenia in humans and various animal species. Although several BjV toxins acting on hemostasis have been well characterized in vitro, it is not known which one is responsible for inducing thrombocytopenia in vivo. In previous studies, we showed that BjV incubated with metalloproteinase or serine proteinase inhibitors and/or anti-botrocetin antibodies still induced thrombocytopenia in rats and mice.

View Article and Find Full Text PDF

Different kinds of proteins interact with the digestible lipids in various ways, affecting the adsorption behavior of proteins and digestion. The ordered porous layer interferometry (OPLI) system was constructed by the silica colloidal crystal (SCC) films used to monitor the real-time binding assessment between bovine serum albumin (BSA), casein, fibrinogen, and triolein. The OPLI system reflected the changes in protein mass on the SCC films in real time through the migration of the interference spectrum of the SCC films, which was converted into the changes in optical thickness (ΔOT) that can be monitored.

View Article and Find Full Text PDF

Self-Assembly of Human Fibrinogen into Microclot-Mimicking Antifibrinolytic Amyloid Fibrinogen Particles.

ACS Appl Bio Mater

December 2024

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Recent clinical studies have highlighted the presence of microclots in the form of amyloid fibrinogen particles (AFPs) in plasma samples from Long COVID patients. However, the clinical significance of these abnormal, nonfibrillar self-assembly aggregates of human fibrinogen remains debated due to the limited understanding of their structural and biological characteristics. In this study, we present a method for generating mimetic microclots in vitro.

View Article and Find Full Text PDF

The pathogen Porphyromonas gingivalis contributes to the pathogenesis of periodontitis and other systemic diseases. The zinc-dependent metallopeptidase PepO is a virulence factor that plays a crucial role in the adhesion and invasion of Porphyromonas gingivalis to human cells. Here, we solved the 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!