Power and maximum strength relationships during performance of dynamic and static weighted jumps.

J Strength Cond Res

Sports Science, United States Olympic Committee; Colorado Springs, Colorado 80909, USA.

Published: February 2003

The purpose of this study was to investigate the relationship of the 1 repetition maximum (1RM) squat to power output during countermovement and static weighted vertical squat jumps. The training experience of subjects (N = 22, 87.0 +/- 15.3 kg, 14.1 +/- 7.1% fat, 22.2 +/- 3.8 years) ranged from 7 weeks to 15+ years. Based on the 1RM squat, subjects were further divided into the 5 strongest and 5 weakest subjects (p

Download full-text PDF

Source
http://dx.doi.org/10.1519/1533-4287(2003)017<0140:pamsrd>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

static weighted
8
1rm squat
8
power maximum
4
maximum strength
4
strength relationships
4
relationships performance
4
performance dynamic
4
dynamic static
4
weighted jumps
4
jumps purpose
4

Similar Publications

[Determination of physical properties and calibration of discrete element simulation parameters for Jianwei Xiaoshi Granules].

Zhongguo Zhong Yao Za Zhi

December 2024

Key Laboratory of Modern Preparations of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine Nanchang 330004, China National Key Laboratory of Creation of Modern Chinese Medicine with Classical Formulas Nanchang 330004, China Jiangxi Technology Innovation Center of Green Manufacturing of Chinese Medicine Nanchang 330004, China.

The construction method and simulation parameter settings for the discrete element model of Jianwei Xiaoshi Granules, as the primary material of Jianwei Xiaoshi Tablets, are not yet clear. The accuracy of the simulation model significantly influences the dynamic response characteristics between granules. Therefore, it is necessary to calibrate the parameters to improve the accuracy of the simulation parameters.

View Article and Find Full Text PDF

Among the numerous measurements carried out during a well-logging procedure, the Nuclear Magnetic Resonance (NMR) assessment is one of the fundamental analyses in determining the economic viability of a well for the oil industry. Nowadays, two reliable approaches, Wireline Logging (WL) and Logging While Drilling (LWD), stand out. WL comprises the acquisition of NMR data under static conditions.

View Article and Find Full Text PDF

Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network.

View Article and Find Full Text PDF

Introduction: Bony and ligamentous ankle injuries are some of the most commonly treated injuries by orthopedic surgeons. Open ligamentous ankle injuries without an associated fracture or dislocation are rare and to our knowledge have only sparsely been described in the literature. We present a case and successful treatment of an open lateral ankle injury with capsular rupture and ligamentous damage without fracture or dislocation in a 22-year-old female.

View Article and Find Full Text PDF

This study focuses on the geotechnical evaluation of the foundation conditions of the Agrippa Monument at the Acropolis of Athens, aiming to propose interventions to improve stability and reduce associated risks. The assessment reveals highly uneven foundation conditions beneath the monument. A thorough collection of bibliographic references and geotechnical surveys was conducted, classifying geomaterials into engineering-geological units and evaluating critical parameters for geotechnical design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!