The aim of this study is to immobilize an enzyme, namely, organophosphorus hydrolase (OPH), and to detect the presence of paraoxon, which is an organophosphorus compound, using the layer-by-layer (LbL) deposition technique. To lift the OPH from the solid substrate, a pair of polyelectrolytes (positively charged chitosan (CS) and negatively charged poly(thiophene-3-acetic acid) (PTAA)) were combined. These species were made charged by altering the pH of the solutions. LbL involved alternate adsorption of the oppositely charged polyions from dilute aqueous solutions onto a hydrophilic quartz slide. This polyion cushion was held together by the electrostatic attraction between CS and PTAA. The growing process was monitored by fluorescence spectroscopy. OPH was then adsorbed onto the five-bilayer CS/PTAA system. This five-bilayer macromolecular structure compared to the solid substrate rendered stability to the enzyme by giving functional integrity in addition to the ability to react with paraoxon solutions. The ultimate goal is to use such a system to detect the presence of organophosphorus compounds with speed and sensitivity using the absorption and fluorescence detection methodologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja028691hDOI Listing

Publication Analysis

Top Keywords

organophosphorus hydrolase
8
detect presence
8
solid substrate
8
layer-by-layer self-assembled
4
self-assembled chitosan/polythiophene-3-acetic
4
chitosan/polythiophene-3-acetic acid
4
organophosphorus
4
acid organophosphorus
4
hydrolase multilayers
4
multilayers aim
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!